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Samenvatting

Brevity is the soul of wit.

William Shakespeare (1564-1616)

Engels schrijver

1 Probleemstelling

1.1 Ervaren van geluidshinder

Tijdens het uitvoeren van activiteiten worden mensen vaak geconfronteerd

met lawaai. Die perceptie van geluid uit onze omgeving kan de activitei-

ten belemmeren, zoals bv. tijdens praten, luisteren naar de radio, televisie

kijken, rusten, slapen, lezen, werken, studeren,... Het geluid stoort of hin-

dert ons. De mate waarin we hinder ervaren zal natuurlijk sterk afhangen

van de karakteristieken van het geluid waaraan we blootgesteld worden (de

bron van het geluid, luidheid,...). Maar toch zijn dit niet de enige bepalen-

de factoren. Ook persoonlijke, emotionele, situationele,... factoren spelen

hierbij een heel belangrijke rol. Een huisvader die ’s avonds na een zware

dagtaak rustig in zijn zetel zijn krant wil lezen, zal zich sneller ergeren aan

lawaai dan een tiener die zich na een saaie schooldag wil ontspannen en

buiten gaan spelen.

Naast het ervaren van hinder door omgevingslawaai, kan geluid ook fy-

siologische gevolgen hebben. Fysiologie is de studie van de functie van

het menselijk lichaam. Fysiologische gevolgen hebben dan ook betrekking

op veranderingen in het lichaam, zoals bv. een hogere bloeddruk, sneller

hartritme en stress hormonen [147]. Het is trouwens goed mogelijk dat

deze effecten eerder een gevolg zijn van het ervaren van hinder dan recht-

streeks van de blootstelling aan geluid zelf. Nachtlawaai kan ervoor zorgen

dat we ontwaken [66]. Maar verstoring van rust of slaap, zelfs zonder dat

we er van wakker worden of het ons herinneren, kan leiden tot loomheid,

xvii
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slaperigheid en nervositeit overdag omdat we minder diep slapen [146].

Een studie onder internationale experten in het vakgebied akoestiek

en effecten van geluid, toonde echter aan dat geluidshinder algemeen be-

schouwd wordt als het belangrijkste gevolg van geluid [79]. Het concept

“geluidshinder” is sterk gekoppeld met termen zoals “verstoring” en “over-

last”. Het wordt algemeen aanvaard als een goede indicator voor het be-

schrijven van de effecten van omgevingsgeluid op de mens. Formeel is

geluidshinder een psychologisch concept dat gedefiniëerd is als “een ne-

gatieve evaluatie van de toestand van de omgeving, een reactie voortge-

bracht door belemmering van activiteiten zoals verstoring van communi-

catie” [79].

1.2 Duurzame ontwikkeling

De laatste decennia streeft men meer en meer naar een maatschappij ge-

baseerd op duurzame ontwikkeling, “een maatschappij die voorziet in de

behoeften van de huidige generatie zonder daarmee voor toekomstige ge-

neraties de mogelijkheden in gevaar te brengen om ook in hun behoeften te

voorzien” [1]. Hiervoor is het echter noodzakelijk dat men de effecten van

milieuhinder voortdurend opvolgt en kan controleren. Hinder door lawaai

is hierbij een belangrijke component die ook moet in rekening gebracht

worden.

Om de effecten van geluid op een kordate manier te kunnen opvolgen,

moet men in de eerste plaats weten waarvan het geluid komt. Om op der-

gelijke vragen te kunnen antwoorden, maakt de Europese Commissie ge-

bruik van het DPSI-R model (Eng.: Driving forces, Pressure, State, Impact,

Responses) [3], zie figuur 1. Dit model vertrekt van de maatschappelijke

activiteiten (D) die druk (P) uitoefenen op het milieu door de uitstoot van

deeltjes of energie. Deze emissie wijzigt de toestand (S) van het milieu,

de immissie, die op haar beurt een effect heeft op de ecosystemen en de

mens (I). Het onder controle houden van deze effecten, vereist maatregelen

(R) op alle niveaus. Sommige maatregelen ontstaan spontaan in de natuur

(zelfregulatie), anderen worden door de beleidsmakers genomen.

Specifiek voor omgevingslawaai neemt dit model volgende vorm aan.

Maatschappelijke activiteiten Een belangrijke activiteit die heel veel ge-

luid produceert is ongetwijfeld verkeer en vervoer. Dit omvat alle

mogelijke soorten voertuigen, op de weg, op sporen (treinen, trams

en metro), op het water en in de lucht. Natuurlijk kunnen ook andere

economische activiteiten geluid veroorzaken, zoals KMO’s, fabrieken,

bouwindustrie en landbouwwerktuigen. Verder zijn onze vrijetijds-

bestedingen eveneens bronnen van geluid, zoals bv. op restaurant en



Probleemstelling xix

Maatschappelijke

activiteiten

Druk Toestand Effecten

Maatregelen

Figuur 1: DPSI-R model

café gaan, een pretpark of kermis bezoeken,... Gewoon thuisblijven

kan dan weer geluid veroorzaken voor onze buren, bv. door het spelen

van muziek of geluiden van dieren en kinderen.

Druk De druk die een activiteit op het milieu uitoefent is rechtstreeks ver-

bonden met de bron van het geluid op de specifieke plaats van de

bron. Elk type bron heeft haar eigen karakteristieken, zoals frekwen-

tie, tonaliteit, duur,... Een van de belangrijkste karakteristieken is

echter het geluidsniveau, uitgedrukt in decibel (dB). Dit is een logarit-

mische schaal gebaseerd op de fysische geluidsdruk. Ter referentie,

een gewone conversatie produceert 60 dB op normale luisterafstand.

De gehoordrempel is 0 dB, terwijl de pijngrens ergens op 120 dB ligt.

Toestand De toestand van het milieu beschouwt vooral het geluid dat aan-

wezig is op een bepaalde plaats, ongeacht de bron waarvan het geluid

komt. Het is de immissie van geluid die op een bepaalde locatie door

een persoon wordt waargenomen. Hierbij worden de fysiologische

aspecten van het menselijk gehoor ook in rekening gebracht. Men

heeft immers vastgesteld dat het menselijk gehoor voor bepaalde fre-

kwenties gevoeliger is dan voor andere, sommige frekwenties horen

we dus luider dan andere. Dit betekent dat de geluidsniveaus in dB

niet geschikt zijn om de luidheid waaraan men blootgesteld is uit

te drukken. Ze worden daarom gecorrigeerd volgens de frekwentie-

afhankelijke gevoeligheden van het menselijk gehoor. Dit noemt men

de A-weging. Het resultaat is het A-gewogen geluidsniveau, uitge-

drukt in de A-gewogen decibel dBA.

Gedurende een bepaalde periode in de tijd is men vaak blootgesteld

aan diverse gebeurtenissen die geluid produceren, bv. een vrachtwa-

gen die passeert of een vliegtuig dat overvliegt. Voor het modelleren

van hinder zijn die afzondelijke gebeurtenissen niet belangrijk, men

is eerder geïnteresseerd in de globale geluidsniveaus op die plaats.

Zo’n algemene maat wordt bekomen door het gemiddelde A-gewogen

geluidsniveau over een dag van 24 uur te berekenen waarbij 10 dBA
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extra gerekend wordt voor de nachtelijke uren tussen 22u en 7u. Dit

noemt men het dag-nacht geluidsniveau (DNL, Ldn). Op dezelfde wij-

ze definiëert men ook het dag-avond-nacht geluidsniveau (DENL, Lden)

waarbij men 5 dBA extra rekent voor de avonduren (19u tot 23u) en

10 dBA voor de nachtelijke uren (23u tot 7u).

Effect De gevolgen van geluid op de mens werden al uitvoerig besproken

in de vorige sectie.

Maatregelen Men kan verschillende beslissingen nemen om zowel de emis-

sie, immissie als de gevolgen van geluid te beperken. Zo kan men kie-

zen voor stillere voertuigen en wegenoppervlakken om de geluidsemis-

sie van wegverkeer te verminderen. De immissie kan men verminde-

ren door lawaaierige omgevingen zo veel mogelijk gescheiden te hou-

den van leefomgevingen die meer stilte vragen, bv. door het plaatsen

van geluidsschermen en betere isolatie van huizen. Het is de taak van

de politieke overheid om dergelijke maatregelen te nemen. Het nauw-

gezet opvolgen van de hinder die door geluid veroorzaakt wordt en

–indien mogelijk– het voorspellen van de hinder na geplande wijzi-

gingen aan de omgeving, bv. de aanleg van een nieuwe weg, is hierbij

van essentieel belang.

1.3 Geluidshindermodellen

Geïnspireerd door de DPSI-R ketting, zou men zich dus een model kunnen

voorstellen dat vertrekt van de maatschappelijke activiteiten en de ketting

vervolgens doorloopt om uiteindelijk te resulteren in een uitdrukking van

de hinder die men op een bepaalde plaats zal ondervinden. Helaas is deze

simpele gedachtengang in de praktijk niet zo eenvoudig. De problemen

die hierbij komen kijken hebben allemaal betrekking op het verwerven,

voorstellen en verwerken van informatie. Laat ons daarom eerst even de

verschillende soorten informatie van naderbij onderzoeken [131].

De meest eenvoudige soort informatie is precieze informatie, gegeven

door een (scherp) getal, bv. “het geluidsniveau van de muziek is 100 dBA”.

Maar in de realiteit is informatie vaak niet zo precies. De uitdrukking “het

geluidsniveau van de muziek is tussen 90 en 110 dBA” bevat onnauwkeuri-

ge informatie. Vage informatie is onnauwkeurige informatie die zelfs niet

tussen scherpe grenzen kan opgegeven worden, bv. “het geluidsniveau van

de muziek is luid”. Soms kan er twijfel zijn omtrent de waarheid van infor-

matie, men spreekt dan over onzekere informatie, bv. “het geluidsniveau

van de muziek is mogelijks 100 dBA”. Deze onzekerheid kan bv. te wijten
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zijn aan fouten aan de meetapparatuur, slechte afstelling,... Onnauwkeu-

righeid en onzekerheid zijn orthogonale concepten die ook gecombineerd

kunnen voorkomen, bv. “het geluidsniveau van de muziek is mogelijks tus-

sen 90 en 110 dBA”. Informatie die onnauwkeurig en/of onzeker is, noemt

men ook wel eens imperfecte informatie.

Als men nu het DPSI-R model wil volgen vanaf de maatschappelijke ac-

tiviteiten tot de effecten van geluid, krijgt men te maken met volgende pro-

blemen. De concepten worden subjectiever en vager. Waar men de emissie

van geluidsniveaus kan meten en uitdrukken op een fysische, numerieke

schaal, is dit niet meer mogelijk voor concepten zoals geluidshinder en

gevoeligheid voor geluid. Ten eerste bestaat er voor dergelijke concep-

ten geen fysische schaal meer en ten tweede, beschrijven deze concepten

veeleer een gevoel, die men niet als een scherp getal kan communiceren.

Gegevens worden zeldzamer, onnauwkeuriger en onzekerder. Het verza-

melen van grote hoeveelheden gegevens om modellen te valideren is een

tijdrovende en dure aangelegenheid. Vaak is men dan ook aangewezen

op veralgemeningen of extra- en interpolaties waardoor de onzekerheid

toeneemt. Gegevens die gemeten worden, zijn vaak onderhevig aan on-

zekerheden door meetfouten. Aan de andere kant zijn er ook concepten

die niet eens kunnen gemeten worden, bv. geluidshinder. Gegevens over

dergelijke concepten worden typisch verzameld via enquêtes, uitgevoerd

per post, per telefoon of persoonlijk aan de deur. Hierbij worden mensen

gevraagd om een aantal vragen te beantwoorden. Gegevens op zo’n ma-

nier verzameld zijn vaak onvolledig (mensen kunnen vragen vergeten te

beantwoorden), onnauwkeurig (door slecht gekozen antwoordmogelijkhe-

den) en onzeker (door menselijke fouten tijdens het aankruisen van het

gekozen antwoord). Kennis wordt schaarser, vager en onzekerder. Hoe-

wel er fysische wetten bestaan die de voortplanting van geluid beschrijven,

is nog maar weinig gekend over de voortplanting van geluid over grotere

afstanden (zelfs al vanaf enkele honderden meters). Over variabelen die

de ervaring van geluidshinder beinvloeden en de precieze relaties is echter

nog veel minder gekend. Vaak kunnen experten in het domein enkel vage

uitdrukkingen geven over de relaties die momenteel verondersteld worden.

Dergelijke kwalitatieve kennis gebruiken in rekenmodellen is niet triviaal.

In dit werk wordt hinder als het belangrijkste effect van omgevings-

lawaai gemodelleerd. Vertrekkende van het einde van de DPSI-R ketting,

wordt het concept geluidshinder ontleed tot aan de toestand van de om-

geving en alle factoren die de perceptie van geluid beinvloeden. Hierbij

moet het ontwikkelde model in staat zijn om op een natuurlijke, zinvolle

manier om te gaan met vage en onzekere concepten, gegevens en kennis.

Meerbepaald stellen we volgende doelstellingen voorop.
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Tolerant De aanpak moet tolerant zijn voor informatie –zowel gegevens

als kennis– die onnauwkeurig, vaag of onzeker is of die ontbreekt. Het

model moet zo nauwkeurig mogelijk functioneren met de beschikbare

informatie.

Betrouwbaar De resulterende uitdrukking van geluidshinder moet zinvol

zijn. Het resultaat mag niet nauwkeuriger zijn dan haalbaar op ba-

sis van de beschikbare informatie. Als het resultaat niet op een na-

tuurlijke manier kan uitgedrukt worden als een getal, dan mag het

systeem dat ook niet doen. De uitvoer moet betrouwbaar zijn bin-

nen de grenzen van de invoer, en een hint geven omtrent de bereikte

betrouwbaarheid.

Robuust Het model moet robuust zijn. Kleine schommelingen in de in-

voergegevens (bv. door onzekerheid op meetapparatuur) mag geen

grote invloed hebben op het resultaat.

Interpreteerbaar De werking van het model moet transparant en eenvou-

dig te begrijpen zijn voor een expert. De betekenis en het interne

redeneerproces moet duidelijk zijn.

Persoonlijk De hindervoorspelling moet op een persoonlijke basis zijn en

niet statistisch uitgemiddeld. De invloed van persoonlijke, emotione-

le, situationele,... variabelen moet men in rekening kunnen brengen.

Adaptief Het systeem moet de mogelijkheid bieden om de waarheid van

hypothetische kennis te testen. Het moet een werkinstrument zijn

waarmee men kan onderzoeken welke variabelen een invloed hebben

op de ervaring van hinder, en hoe de relaties tussen die variabelen en

hinder zijn.

Op basis van het voorgaande, spreekt het voor zich dat de behandeling

van vaagheid en onzekerheid van informatie speciale aandacht zal vragen.

Dit is echter niet eenvoudig in een wiskundige wereld die volledig gedragen

wordt door de wetten van de binaire logica. Het is op die manier immers

onmogelijk om op een wiskundige manier gradaties uit te drukken, alles is

ofwel volledig waar ofwel volledig vals.

Om toch op een wiskundig verantwoorde manier te kunnen omgaan met

de graduele overgangen van concepten uit de reële wereld, introduceerde

Zadeh in 1965 de vaagverzamelingenleer [183]. In een vaagverzameling

heeft een object een lidmaatschapsgraad die uitdrukt in welke mate het

object behoort tot een klasse van objecten die geen scherpe grenzen heeft,

bv. de klasse van mooie vrouwen. Sindsdien zijn de vaagverzamelingen-

leer en de daarmee samenhangende vaaglogica [188] en possibiliteitsthe-
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orie [191] [54] uitgegroeid tot de instrumenten bij uitstek om vage en on-

zekere informatie te modelleren. In dit werk zal aangetoond worden dat

de theorie van vaagverzamelingen uitermate geschikt is om de problemen

rond het modelleren van hinder aan te pakken en de naar voor geschoven

doelstellingen te bereiken.

Voor een uitvoerige bespreking van de relevante wiskundige concepten

uit de vaagverzamelingenleer wordt verwezen naar de literatuur [53] [58]

[97] [132], of naar hoofdstuk 2 in dit werk.

2 Voorstellen van geluidshinder

2.1 Hinderschalen

Vooraleer men kan spreken over het modelleren van geluidshinder moet

men eerst weten hoe men geluidshinder wil gaan voorstellen, wat een ge-

schikte representatievorm is voor het concept geluidshinder. Voor geluids-

hinder ontbreekt een algemeen aanvaarde schaal. Dit komt wellicht door

het feit dat geluidshinder geen fysische, onderliggende schaal heeft, het is

een puur psychologisch concept. Dit heeft twee belangrijke gevolgen. Ten

eerste moet men zijn toevlucht nemen tot een denkbeeldige schaal en ten

tweede kan men geluidshinder niet meten. Informatie over geluidshinder

moet men verzamelen via enquêtes. Om de vraag naar de ervaring van ge-

luidshinder te beantwoorden, worden diverse hinderschalen gebruikt, zo-

als numerieke categorieën (bv. 1 tot 5 of 0 tot 10), een continue lijnschaal of

een verbale schaal met vier of vijf linguïstische termen. Deze laatste schaal

levert de bijkomende moeilijkheid van taalgebruik, maar anderzijds is het

ook een veel natuurlijker manier om een niveau van hinder uit te drukken.

Deze methode heeft wel als nadeel dat men nu niet meer zeker kan zijn

dat het universum opgedeeld is in categorieën die op gelijke afstand van

elkaar liggen. Uit een laboratoriumexperiment van Rohrmann is echter wel

gebleken dat mensen niet uitsluitend de betekenis van woorden in reke-

ning te brengen maar de neiging hebben om alle termen op de schaal op

een gelijke afstand van elkaar te verdelen.

Een groot nadeel van het gebruik van deze uiteenlopende schalen, is dat

men de resultaten van twee enquêtes heel moeilijk met elkaar kan verge-

lijken. Vaak is men voor het opstellen van een model gebonden door de

gegevens die in één welbepaalde enquête verzameld zijn. Zelfs wanneer

enquêtes een verbale schaal gebruiken, kunnen er veel verschillen zijn die

onderling vergelijken moeilijk maken: verschillen in taal, verschillen in

terminologie en verschillen in het aantal termen op de schaal. Daarnaast
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kunnen de formulering van de hindervraag, verschillen in cultuur en de

contekst van de enquête uiteraard ook nog de resultaten beïnvloeden

Historisch heeft de term “erg gehinderd” een bijzondere plaats inge-

nomen, als een belangrijke term om te modelleren. Om een numerieke

(of continue schaal) “om te rekenen” naar ernstige hinder, wordt traditio-

neel 7.2 op een schaal tussen 0 en 10 als scheidingspunt genomen [140].

Andere gekende scheidingspunten zijn 5.0 voor “gehinderd” en 2.8 voor

“minstens een beetje gehinderd” [123]. Beneden 2.8 wordt dan geïnterpre-

teerd als “helemaal niet gehinderd”. Het spreekt voor zich dat dergelijke

scherpe scheidingspunten op zijn zachtst gezegd arbitrair zijn en totaal

niet in overeenstemming zijn met de eigenlijke betekenis van de termen.

In dit werk wordt hinder benaderd als een inherent vaag en subjectief

concept. Het is een gevoel, een gemoedstoestand die voortvloeit uit de per-

ceptie van geluid die men niet kan uitdrukken met een (scherp) getal. Men

kan er echter wel over communiceren in natuurlijke taal. Als iemand be-

weert dat hij “een beetje” gehinderd is, dan weten we min of meer hoe die

persoon zich voelt. Er is hier echter geen sprake van scherpe grenzen, de

grenzen zijn gebieden waarin de term langzaam overgaat van passend tot

niet-passend. Dergelijke concepten zijn ideaal om te modelleren als lingu-

ïstische variabelen in de vaagverzamelingentheorie [188] [82]. Een lingu-

ïstische variabele is een variabele die als waarden geen getallen aanneemt

maar woorden of zinnen uit een natuurlijke taal. In de uitdrukking “Cindy

is jong” kan “jong” beschouwd worden als een linguïstische waarde van de

linguïstische variabele “Leeftijd”. Een vaagverzameling kan dan gebruikt

worden om de betekenis van een linguïstische waarde voor te stellen, bv.

een vaagverzameling met als domein het interval [0,120].

Vooraleer hinder te modelleren als een linguïstische variabele, zullen de

resultaten van een internationale hinderschaalstudie besproken worden.

2.2 Internationale hinderschaalstudie

In 1993 heeft team 6 van de Internationale Commissie voor de Biologische

Effecten van Geluid (ICBEN) een studie opgezet om tot een internationa-

le consensus te komen voor de keuze van linguïstische termen voor een

hinderschaal in enquêtes [65]. De bedoeling was de constructie van een

linguïstische schaal met termen op een gelijke afstand van elkaar gelegen.

De procedure begon met de selectie van 21 hindertermen (bijwoorden).

Vervolgens werden deze gepresenteerd aan zowel universitaire studenten

als aan personeel van bedrijven. Zij werden gevraagd om voor elke term

een tekentje te plaatsen op een lijn van 10 cm die de intensiteit van de

betekenis van de term aangeeft. Hierbij stond de meest linkse kant van de
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lijn voor “helemaal geen hinder” terwijl de uiterst rechtse kant het “groot-

ste mogelijke niveau van hinder” voorstelde. Daarna moesten ze de termen

aangeven die ze verkiezen voor een vijfpuntsschaal en een vierpuntsschaal.

De term voor de laagste categorie lag telkens vast op “helemaal niet gehin-

derd”. Deze enquête werd afgenomen bij 1754 personen verspreid over

negen verschillende talen in twaalf landen. De resultaten werden voor elke

taal afzonderlijk geanalyseerd, waarbij de termen voor een vierpunts– en

vijfpuntsschaal werden vastgelegd. De gemiddelde intensiteit op de 10 cm

lijn van elke Engelse en Nederlandse term, alsook de bijhorende standaard-

afwijking en de gekozen termen zijn samengevat in tabel 1.

Tabel 1: Engelse en Nederlandse hindertermen met hun gemiddelde inten-

siteit µ en de standaardafwijking σ . De geselecteerde termen voor een

vijfpuntsschaal staan in vet, de vierpuntsschaal termen in schuinschrift.

Code Engels µ σ Nederlands µ σ

L01 not at all 0.08 0.50 helemaal niet 0.04 0.07

L02 insignificantly 0.76 0.86 niet 0.14 0.26

L03 barely 0.81 0.81 nauwelijks 0.94 0.77

L04 hardly 1.03 1.24 weinig 1.24 0.65

L05 a little 1.32 0.81 iets 1.57 1.03

L06 slightly 1.54 0.94 lichtelijk 1.64 1.00

L07 partially 2.96 1.30 een beetje 1.65 0.94

L08 somewhat 3.57 1.53 enigzins 2.59 1.35

L09 fairly 4.05 1.49 matig 3.44 1.39

L10 moderately 4.37 1.09 tamelijk 3.92 1.47

L11 rather 4.79 1.72 behoorlijk 6.21 1.70

L12 importantly 6.51 1.43 aanzienlijk 6.81 1.57

L13 considerably 6.22 1.70 veel 6.90 1.20

L14 substantially 6.45 1.53 erg 7.42 1.08

L15 significantly 6.72 1.42 sterk 7.79 1.06

L16 very 7.56 1.21 zeer 8.03 0.87

L17 highly 7.87 1.08 ernstig 8.05 1.02

L18 strongly 7.97 0.94 enorm 8.59 0.99

L19 severely 9.07 1.14 ontzettend 8.74 0.93

L20 tremendously 9.23 0.94 uitermate 8.91 1.03

L21 extremely 9.49 0.87 extreem 9.78 0.27



xxvi SAMENVATTING

Tijdens deze studie werd voor elke taal ook de formulering van de vra-

gen omtrent hinder vastgelegd.

2.3 Vaagverzamelingen voor hindertermen

2.3.1 Inleiding

Om hinder te kunnen voorstellen als een linguïstische variabele, moet men

voor elke hinderterm een vaagverzameling definiëren. In overeenstemming

met de internationale hinderschaalstudie wordt het interval [0,10] geko-

zen als domein voor deze vaagverzamelingen. Doorheen dit werk zal het

symbool H gebruikt worden om de linguïstische variabele “hinder” aan te

duiden. Het domein zal genoteerd worden als H = [0,10]. De verzameling

van de linguïstische waarden die H kan aannemen zal genoteerd worden

als L = {L1, L2, . . . , Lm}metm ∈ N, L is dan een generiek element van deze

verzameling.

In een van de eerste vage analyses van linguïstische termen, kwamen

Hersch en Caramazza [82] tot de conclusie dat vaagverzamelingen uiterma-

te geschikt zijn voor de voorstelling van termen uit de natuurlijke taal. Ze

stelden eveneens vast dat er twee interpretaties mogelijk zijn: de logische

en de linguïstische interpretatie. De logische interpretatie, hier “inclusie-

ve interpretatie” [46] genoemd, gaat ervan uit dat iedereen die “extreem

gehinderd” is ook kan beschouwd worden als zijnde (tenminste) “ernstig

gehinderd”. Elke term wordt in principe vooraf gegaan door “tenminste”.

De lidmaatschapsfunctie van elke term is stijgend en omvat de lidmaat-

schapsfuncties van alle volgende termen. De linguïstische interpretatie,

hier de “niet-inclusieve interpretatie” [46] genoemd, is niet uitsluitend geïn-

spireerd op de (logische) waarheid, maar houdt vooral rekening met de be-

tekenis van de woorden in het dagelijks taalgebruik. Iemand die gevraagd

wordt naar de mate waarin hij gehinderd is, zal niet “ernstig gehinderd”

antwoorden als hij in feite “extreem gehinderd” is. De lidmaatschapsfunc-

ties zijn klokvormig, behalve de lidmaatschapsfunctie van de eerste en de

laatste term die respectievelijk dalend en stijgend zijn.

Twee methodes om vaagverzamelingen te construeren zullen bespro-

ken worden, methodes gebaseerd op probabiliteitsdistributies en op basis

van vervagingen van scherpe punten die de betekenis van termen weerge-

ven. Deze zullen geïllustreerd worden met de vijf Engelse hindertermen die

in de hinderschaalstudie gekozen werden, L1 = “not at all annoyed” (“he-

lemaal niet gehinderd”), L2 = “slightly annoyed” (“een beetje gehinderd”),

L3 = “moderately annoyed” (“tamelijk gehinderd”), L4 = “very annoyed”

(“erg gehinderd”) en L5 = “extremely annoyed” (“extreem gehinderd”), met
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L = {L1, L2, . . . , L5}.

2.3.2 Probabilistische methodes

De probabilistische methodes vertrekken van het frekwentiehistogram van

punten die geëvalueerd werden als passend bij de betekenis van een be-

paalde term L, bv. op basis van de resultaten van de internationale hinder-

schaalstudie. Deze frekwentiedistributie wordt dan genormaliseerd naar

een probabiliteitsdistributie die vervolgens omgezet wordt in een possibili-

teitsdistributie. Dit resulteert in een vaagverzameling die de niet–inclusieve

interpretatie van de term L voorstelt. Wanneer men gebruik maakt van de

cumulatieve probabiliteitsdistributie, dan verkrijgt men de inclusieve in-

terpretatie.

Om de ruis in de staarten van de distributies te onderdrukken, kan men

ofwel de schaal discretiseren in een beperkter aantal intervallen, ofwel de

best passende, vloeiende curve zoeken bij de possibiliteitsdistributie. In de

laatste techniek kan de aanwezige ruis in de probabiliteitsdistributie echter

een invloed hebben op de transformatie naar de possibiliteitsdistributie.

Er zijn drie soorten transformaties om probabiliteit om te zetten naar

possibiliteit. Veronderstel de probabiliteitsdistributie p en de possibili-

teitsdistributie π over het discrete domein {h1, h2, . . . , hn}, met hi ∈ H

voor i ∈ {1,2, . . . , n} en pi = p(hi) en πi = π(hi).
Maximum-normalisatie Hierbij wordt de distributie enkel (possibilistisch)

genormaliseerd door te delen door de grootste probabiliteit [93].

Onzekerheidsbehoudende transformatie Deze transformatie voorgesteld

door Klir, gaat ervan uit dat bij een overgang van een theorie naar een

andere, de hoeveelheid onzekerheid ongewijzigd moet blijven. De

onzekerheid van een probabiliteitsdistributie wordt gegeven door de

entropie, gedefineerd als,

H(p) = −
n
∑

i=1

pi log2 pi . (1)

Bij possibiliteitsdistributies maakt men onderscheid tussen de niet-

specificiteit N(π) en de ambiguïteit D(π). In de definities van N en

D veronderstelt men de ordening π1 ≥ π2 ≥ . . . ≥ πn.

N(π) =
n
∑

i=2

πi log2
i

i− 1
(2)

D(π) = −
n−1
∑

i=1

(πi −πi+1) log2



1− i
n
∑

j=i+1

πj

j(j − 1)



 (3)
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Om de hoeveelheid onzekerheid te behouden moet aan volgende ver-

gelijking voldaan zijn: H(p) = N(π)+D(π). Klir poneerde dat enkel

volgende transformatie voor alle distributies bestaat en uniek is.

πi =
(

pi

pmax

)α

(4)

met pmax de grootste probabiliteit. De constante α wordt bepaald

door minimalisatie van het verschil tussen H en N +D en ligt in het

interval [0,1].

Probabilistisch-verschiltransformatie Deze methode werd gedefiniëerd door

Dubois en Prade. Ze gaat uit van drie basisprincipes: de consistentie

tussen probabiliteit en possibiliteit, behoud van voorkeur uitgedrukt

door de distributies en het optimaal gebruik van de aanwezige infor-

matie. De transformatie wordt gegeven door

πi =
n
∑

j=1

min(pi, pj) . (5)

De vaagverzamelingen voor de vijf Engelse hindertermen geconstrueerd

met deze methode (onzekerheidsbehoudende transformatie) worden ge-

toond in figuur 2. Hierbij werden de gegevens van de hinderschaalstu-

die eerst gediscretiseerd in 11 intervallen. Aangezien deze methode enkel

steunt op de gegevens van de term zelf, is ze bijzonder geschikt om de

werkelijke betekenis van de termen te modelleren, los van relaties tussen

de termen onderling.

2.3.3 Vervagingsmethodes

Het uitgangspunt van deze methodes is het feit dat het teken hkj geplaatst

door persoon k, k ∈ {1,2, . . . , N} met N het totaal aantal personen, voor

een term Lj , j ∈ {1,2, . . . ,5}, omgeven is door onnauwkeurigheden. Men-

sen hebben immers het teken geplaatst “in de buurt” van de betekenis van

de term, zonder exact de afstand te meten. Het is dus gerechtvaardigd om

een vaagverzameling te definiëren rond het teken hkj van elke persoon om

deze onnauwkeurigheden uit te drukken. Met het oog op een inclusieve in-

terpretatie zullen deze onnauwkeurigheden zich enkel langs de linkerkant

van het teken bevinden (rechts van het teken zal de lidmaatschapsgraad

overal 1 zijn). Voor de niet-inclusieve interpretatie, zijn de onnauwkeurig-

heden aan beide zijden aanwezig (behalve voor de eerste en laatste term).

Wanneer al deze individuele vaagverzamelingen voor een bepaalde term
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Figuur 2: Vage representatie van de betekenis van vijf hindertermen (“not

at all”, “slightly”, “moderately”, “very”, “extremely”) op basis van de on-

zekerheidsbehoudende transformatie (links: niet-inclusieve interpretatie,

rechts: inclusieve interpretatie)

Lj uitgemiddeld worden over alle personen, bekomt men een vaagverza-

meling die de consensus van de betekenis van de term voorstelt. Om ruis

te onderdrukken, kan men hier ook een best passende, vloeiende curve

bepalen.

In [36] stelde Cleeren voor om het teken hkj van elke persoon te ver-

vagen met flanken gebaseerd op de globale standaardafwijking van alle

merktekens van de term Lj . Hierin komt immers de consistentie van de

betekenis van de term over de ganse groep van personen tot uitdrukking.

Toch heeft deze aanpak enkele nadelen. Ten eerste, wordt geen rekening

gehouden met de relaties tussen de termen die een bepaalde persoon in

zijn gedachten heeft. Dit is echter wel belangrijk om een correcte verva-

ging van een term te kunnen bepalen. Ten tweede, veronderstelt men dat

de standaardafwijking van één persoon 100 keer de betekenis van een term

vragen, gelijk is aan de standaardafwijking van die vraag 1 keer aan 100

verschillende personen te stellen. Dit impliceert dat elke term dezelfde be-

tekenis zou hebben voor alle personen. En ten derde, levert deze aanpak

vaagverzamelingen op die elkaar een flink stuk overlappen, waardoor hun

praktische bruikbaarheid daalt.

Om deze problemen op te lossen, wordt hier een methode voorgesteld

waarbij men elk teken vervaagt zodat het snijpunt van de flanken van twee

opeenvolgende termen altijd gelijk is aan een vooraf gekozen constante

α. Bijvoorbeeld voor de constructie van een asymmetrische Gaussiaanse

curve rond het teken hkj met linkerflank σkj en rechterflank δkj voor twee
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opeenvolgende termen j en j + 1,

δkj = σkj+1 =
(

1
√

−2 ln(α)

)

hkj+1 − hkj
2

(6)

De limiet waarbij α naar 0 gaat, resulteert in limα→0
1√

−2 ln(α)
= 0, wat

impliceert dat de standaardafwijking van de flanken 0 wordt en de methode

zich reduceert tot de probabilistische methoden.

Het resultaat van deze methode voor de vijf Engelse termen die in de

internationale hinderschaalstudie gekozen werden, wordt getoond in fi-

guur 3. Hier worden de onderlinge relaties tussen de termen wel gebruikt.

Het resultaat is dus afhankelijk van de verzameling termen die gemodel-

leerd worden, en heeft de neiging om het volledige domein te bedekken.

De mate van overlapping kan gecontroleerd worden met de parameter α.

De vaagverzamelingen zijn hierdoor uitermate geschikt om te gebruiken in

regelgebaseerde toepassingen, waarin een zekere overlappingsgraad wen-

selijk is.
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Figuur 3: Vage representatie van de betekenis van vijf hindertermen (“not

at all”, “slightly”, “moderately”, “very”, “extremely”) op basis van de ver-

vagingsmethode met α = 0.1 (links: niet-inclusieve interpretatie, rechts:

inclusieve interpretatie)

2.4 Vertalen van hindertermen

Nu we beschikken over vaagverzamelingen die de betekenis van linguïsti-

sche termen in diverse talen op een uniforme manier voorstellen, kunnen

alle wiskundige operatoren erop los gelaten worden. Zo kan men gebruik
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maken van een similariteitsmaat om de gelijkaardigheid van twee vaag-

verzamelingen te bepalen. Hoe beter twee vaagverzamelingen op elkaar

gelijken, hoe meer ze eenzelfde betekenis van termen voorstellen en dus,

hoe beter ze in aanmerking komen als vertalingen van elkaar.

Dit principe kan men aanwenden om met behulp van de gegevens van

de internationale hinderschaalstudie een automatische vertalingsapplica-

tie te ontwerpen. Voor alle termen wordt een vaagverzameling opgebouwd.

Aangezien deze vaagverzamelingen zo goed mogelijk de echte betekenis

moeten weergeven, wordt de probabilistische constructiemethode met de

onzekerheidsbehoudende transformatie gebruikt. Uit experimenten is ge-

bleken dat de parameter α altijd min of meer rond 0.5 ligt. Om een auto-

matische verwerking te vereenvoudigen zal deze parameter dan ook vast

gekozen worden op 0.5.

In [151] werd een geparameteriseerde similariteitsmaat voorgesteld die

bruikbaar is in een brede waaier van toepassingen, voor twee vaagverza-

melingen A en B over het universum U ,

SimT (A, B) = T (C1,T (A, B),S(ET (A, B), C2,T (A, B)))

met T een driehoeksnorm en S zijn duale driehoeksconorm. De operator

ET is een T –gelijkheid gedefiniëerd als [44],

ET (A, B) = T
(

inf
u∈U

IT (A(u), B(u)), inf
u∈U

IT (B(u),A(u))
)

met T een driehoeksnorm en IT de residuele implicator voortgebracht

door deze driehoeksnorm. C1,T en C2,T zijn twee compatibiliteismaten,

gegeven door

C1,T (A, B) =
sup
u∈U

T (A(u), B(u))

sup
u∈U

S(A(u), B(u)) C2,T (A, B) =

∑

u∈U
T (A(u), B(u))

∑

u∈U
S(A(u), B(u))

met T een driehoeksnorm en S zijn duale driehoeksconorm.

Voor een automatische vertalingsapplicatie kiezen we SimT = SimTM ,

C1,T = C1,TM , C2,T = C2,TM en ET = ETW [39].

Om nu op basis van de similariteit tussen een term en een aantal andere

termen een “goede” vertaling te kiezen, kan men ofwel alle termen boven

een drempelwaarde s0 behouden, ofwel enkel de term met de hoogste simi-

lariteitsgraad smax kiezen, ofwel alle termen binnen een klein bereik δ van

smax aanvaarden. De laatste optie lijkt het meest aangewezen om te ver-

mijden dat er binnen een beperkte woordenschat geen vertaling gevonden

wordt (bij te hoge s0) en om de resultaten niet te laten beïnvloeden door

kleine storingen in het bepalen van de lidmaatschapsfuncties.
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In tabel 2 worden de engelse termen van de vijfpuntsschaal vertaald

naar het Nederlands en worden al de gevonden vertalingen terug naar het

Engels vertaald. Er mogen hierbij alternatieven bijkomen, maar het belang-

rijkste is dat de oorspronkelijke term teruggevonden wordt. Dit is meestal

het geval maar niet altijd, bv. voor “moderately” waarvoor geen echt goede

vertaling bestaat binnen de beschikbare woordenschat. Over het algemeen

corresponderen de resultaten met de nederlandse vijfpuntsschaal (behal-

ve voor “een beetje”). De automatische vertalingen lijken vrij goed vanuit

intuïtief oogpunt. Het vertalen van een ideale vage taal waarbij het vol-

ledig universum perfect verdeeld wordt over vijf termen met driehoekige

lidmaatschapsfuncties, levert zowel voor het Engels als het Nederlands de

voorgestelde termen op, behalve voor het eerste label (zie tabel 3). Bemerk

dat net deze termen vooraf vastgelegd werden in de internationale hinder-

schaalstudie.

Een grondige gevoeligheidsanalyse van de gebruikte discretisatie en ope-

ratoren toont aan dat deze vertalingsprocedure vrij stabiel is voor een groot

aantal keuzes.

Tabel 2: Vertaling van het Engels naar het Nederlands en terug. De voor-

keurstermen staan in schuinschrift, niet automatisch gevonden voorkeurs-

termen zijn apart gegeven tussen haakjes. Voor elke Nederlandse term is

de similariteitsgraad met het Engels tussen haakjes geplaatst.

Engels Nederlands Engels

not at all helemaal niet (0.93) not at all

slightly lichtelijk (0.91) slightly

(een beetje (0.85) slightly)

moderately matig (0.57) partially

tamelijk (0.53) somewhat

fairly

very erg (0.82) very

extremely extreem (0.70) extremely
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Tabel 3: Vertaling van een ideale vage taal met δ = 0.05.

Ideale taal Engels Nederlands

Label 1 insignificantly niet

Label 2 slightly iets

partially lichtelijk

een beetje

enigzins

matig

Label 3 moderately matig

tamelijk

behoorlijk

Label 4 very erg

strongly sterk

Label 5 extremely extreem

3 Modelleren van geluidshinder

3.1 Hinder door specifieke brontypes

3.1.1 Inleiding

De huidige methode voor het inschatten van geluidshinder afkomstig van

één brontype (bv. wegverkeer) is gebaseerd op een statistische aanpak die

een indicatie geeft voor het percentage “erg gehinderden”. Hierbij wordt

een lineair verband met een normaal verdeelde variabele component ver-

ondersteld tussen de blootstelling aan geluid (DNL) en de ervaring van hin-

der. Het percentage “erg gehinderden” wordt dan berekend op basis van

een (scherpe) grens van 7.2 op een schaal van 0 tot 10 (5.0 voor het percen-

tage “gehinderden” en 2.8 voor het percentage “minstens enigzins gehin-

derden”). Miedema en Oudshoorn hebben voor dergelijke meta-analyses

momenteel de grootste verzameling geluidshinderstudies verzameld. Hier-

bij maken zij onderscheid tussen hinder door wegverkeer, treinverkeer en

luchtverkeer [122]. Hun resulterende dosis-effect relaties worden getoond

in figuur 4.

Hoewel dergelijke dosis-effect relaties al lang gebruikt worden, was er

al van bij hun ontstaan veel kritiek te horen. Zo veronderstelt deze aanpak

dat persoonlijke factoren uitmiddelen over grote groepen, DNL een goede
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Figuur 4: Dosis-effect relaties van Miedema & Oudshoorn [122] waarbij het

percentage erg gehinderden uitgezet wordt in functie van DNL voor lawaai

van vliegtuigen (puntlijn), wegverkeer (volle lijn) en treinverkeer (stippel

lijn).

maat is voor de blootstelling aan geluid en er geen recente nieuwkomers in

of wijzigingen aan de omgeving zijn (de mensen zijn het omgevingslawaai

“gewoon”) [100]. Met behulp van dergelijke meta-analyses heeft men ook

een aantal persoonlijke, emotionele, situationele,... factoren proberen te

identificeren die invloed hebben op de ervaring van hinder [89] [63] [124].

Deze statistische methodes kunnen echter enkel gebruikt worden als

indicator voor de geluidshinder over grote groepen, bv. voor administra-

tieve doeleinden en voor het vergelijken van de hinder tussen landen. Een

dosis-effect relatie kan niet beschouwd worden als een natuurgetrouw mo-

del voor de ervaring van diverse gradaties van hinder (bv. door de scherpe

–onrealistische– grenzen). Meta-analyses kunnen enkel factoren identifi-

ceren die een invloed hebben, de onderliggende relaties zijn moeilijk te

vinden en op een eenvoudig te interpreteren manier weer te geven. Alge-

meen wordt aanvaard dat de blootstelling aan geluid alleen slechts 30 %

van de variatie in geluidshinder kan verklaren [144]. De rest is afhankelijk

van persoonlijke variabelen.

In dit werk wordt een instrument geïmplementeerd, de geluidshinder-

adviseur, dat toelaat om de mate van geluidshinder in te schatten op in-

dividuele basis. Hierin worden een aantal concrete relaties (links) geïm-

plementeerd, bv. “hoge blootstelling”–“ernstige hinder”, gebaseerd op een

conceptueel hindermodel dat vastlegt welke factoren met elkaar geasso-

ciëerd zijn (bv. “blootstelling”–“hinder”). Dit conceptueel model zal eerst

besproken worden, gevolgd door een uiteenzetting over de manier waarop

een concrete instantiëring kan gebruikt worden om de mate van hinder te
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voorspellen.

3.1.2 Conceptueel model

Het conceptueel geluidshindermodel, zie figuur 5, is gebaseerd op de be-

schikbare literatuur, zie [25] voor een overzicht. Duidelijk aangetoonde

associaties zijn weergegeven in een volle lijn, associaties die eerder hypo-

thetisch of onzeker zijn, staan in stippellijn. Voor een bespreking van dit

model en enkele resultaten die met de geluidshinderadviseur bekomen wer-

den op basis van concrete instanties van deze associaties, wordt verwezen

naar sectie 4.

bebouwing,

landgebruik

topografie, natuur,

klimaat, seizoenen

uitzicht,

woningtype

andere

blootstelling

geluids-

blootstelling
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contekst
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gezondheid
bestrijding,

aanpassing
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woonst

hinder

attitudes,

gevoeligheid

Figuur 5: Conceptueel geluidshindermodel. Duidelijke verbanden zijn

weergegeven met een volle lijn, onzekere verbanden staan in stippellijn.

Merk op dat de geluidshinderadviseur vanwege de complexiteit van dit

model en de grote hoeveelheid factoren zeker zal te maken krijgen met

conflicterende relaties en lussen. Zo zal een open bebouwing de versprei-

ding van geluid in de hand werken en de ervaring van hinder versterken.

Anderzijds wijst het op een landelijke omgeving waar mensen graag wonen

en toleranter zijn voor geluid. Enkel bij erge hinder zal men de overlast

actief bestrijden, bv. door het sluiten van een venster, waardoor de hinder

terug daalt.
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Globaal gesproken kan men drie soorten variabelen identificeren.

Initiators De variabelen van het akoestisch veld die de rechtstreekse aan-

leiding zijn van hinder. De term “akoestisch veld” wordt gebruikt als

groepering van de volledige akoestische karakterisering, niet uitslui-

tend beperkt tot uitgemiddelde grootheden zoals Ldn.

Wijzigers Niet-akoestische variabelen die de ervaring van geluidshinder

wijzigen.

Groeperingsindicatoren Een mens is een heel complex systeem van karak-

tereigenschappen en innerlijke toestanden die mede-bepaald worden

door vroegere ervaringen. Om alle menselijke gedragingen te model-

leren moet men dus in principe tot op het genetische niveau afdalen.

Dit zal hier echter niet zo ver doorgedreven worden. Mensen met een

sterk gelijkaardig gedrag voor een bepaalde karaktereigenschap zul-

len gegroepeerd worden op basis van een aantal indicatoren. Zo is

gevoeligheid aan geluid niet afhankelijk van externe factoren, maar

kunnen er wel indicatoren gevonden worden (bv. leeftijd, aantal kin-

deren) die wijzen op een verhoogde gevoeligheid.

Vanuit wiskundig standpunt gezien, zullen deze drie soorten variabelen

echter op eenzelfde manier behandeld worden in de geluidshinderadviseur.

3.1.3 Geluidshinderadviseur

De geluidshinderadviseur zal een concrete instantie van het conceptueel

model moeten kunnen realiseren. De links (instanties van de associaties)

drukken de precieze relatie tussen de variabelen uit. In de geluidshinder-

adviseur zullen de links voorgesteld worden met vage ALS–DAN regels, bv.

“Als de blootstelling hoog is, dan is de geluidshinder erg”. Deze voorstel-

ling laat experten toe om hun kennis op een linguïstische manier uit te

drukken. Tevens zorgt dit ervoor dat het systeem op een eenvoudige ma-

nier te begrijpen is, ook voor niet-wiskundigen en niet-akoestiekers. Een

verzameling van vaagregels wordt een vaagregelbank genoemd. De alge-

mene structuur van een vaagregelgebaseerd systeem is getoond in figuur 6.

De specifieke kennis over het domein is opgeslagen in de kennisbank.

Deze bestaat uit twee componenten, de databank en de (vaag)regelbank.

De aanwezige kennis wordt samen met de invoergegevens door het infe-

rentiesysteem gebruikt om tot een conclusie te komen omtrent de mate

van geluidshinder. Het resultaat wordt vervolgens benaderd door een lin-

guïstische term. Deze componenten worden nu kort toegelicht.
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Figuur 6: Structuur van de geluidshinderadviseur als een vaagregelgeba-

seerd systeem.

Databank

De databank bevat de definities van de termen en concepten die in de for-

mulering van de vaagregels gebruikt worden. Om het concept geluidshin-

der voor te stellen, werden de vaagverzamelingen geconstrueerd met de

vervagingsmethode (zie sectie 2.3.3). Deze geven een goed beeld van de

werkelijke betekenis van de termen en zijn tevens erg geschikt voor ge-

bruik in regelgebaseerde toepassingen. De definitie van de representatie

van andere concepten zal meer ad hoc gebeuren door experten (bv. voor

“jonge leeftijd”). Bemerk dat er geen gegevens uit geluidshinderstudies ge-

bruikt worden om de vaagverzamelingen automatisch te bepalen of aan te

passen. Het model moet zo algemeen mogelijk zijn, los van een specifieke

verzameling gegevens.

Regelbank

In de regelbank zijn de ALS-DAN regels opgeslagen die de links tussen de

variabelen in natuurlijke taal beschrijven. Alle regels die de links represen-

teren op basis van eenzelfde associatie in het conceptueel model, vormen

een parallele verzameling van regels tussen dezelfde variabelen. Door de

linguïstische aanpak kunnen experten hun kennis op een heel intuïtieve

manier formuleren. Alle vaagregels werden dan ook volgens dit principe

bekomen, op basis van de bestaande literatuur. Er werden geen automati-

sche regelextractie algoritmen gebruikt, om het model niet te sterk te kop-
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pelen aan een welbepaalde verzameling gegevens. De klemtoon ligt hier op

een algemeen bruikbaar model dat de werkelijke onderliggende relaties zo

goed mogelijk tot uiting laat komen. Later zal het systeem ook uitgebreid

worden met een methode om regelhypothesen te testen.

Inferentie

Voor het afleiden van kennis op basis van een vaagregel “Als X = A Dan Y =
B” (X en Y variabelen over de respectievelijke universa U en V , A en B vaag-

verzamelingen in respectievelijk U en V ) en een gegeven vaagfeit “X = A′”
(A′ een vaagverzameling in U ) wordt de veralgemeende modus ponens ge-

bruikt, gebaseerd op de compositieregel voor inferentie [189]. Bemerk dat

A′ niet noodzakelijk identiek is aan A! Deze regel stelt dat men als conclu-

sie “Y = B′” mag besluiten, met B′ een vaagverzameling in V gegeven door

(∀v ∈ V)(B′(v) = sup
u∈U

min(A′(u),R(u,v))) (7)

met R de representatie van de vaagregel. De semantiek van de vaagregel

bepaalt hoe de vaagrelatie R moet berekend worden [55] [56]. In dit werk

zijn twee soorten regels van belang.

Zekerheidsregels “Hoe beter X gelijkt op A, hoe zekerder Y gelijk is aan

B”, bv. “hoe jonger een persoon, hoe zekerder hij vrijgezel is”. In dit

geval moet R berekend worden met een S-implicator.

Mogelijkheidsregels “Hoe beter X gelijkt op A, hoe meer mogelijk het is

dat Y gelijk is aan B”, bv. “hoe meer bewolkt dat de lucht is, hoe meer

mogelijk het is dat het snel regent”. Voor deze semantiek moet men

R berekenen met een driehoeksnorm.

Bij mogelijkheidsregels drukt het consequent de mate uit waarin een punt

h ∈ H gegarandeerd mogelijk is. Bijkomende kennis kan een hogere mo-

gelijkheid voor h garanderen. Gezien de beperkte kennis en de grote hoe-

veelheid factoren die een invloed kunnen hebben op hinder, is het moeilijk

om alle kennis die hinderniveaus kan garanderen toe te voegen aan het

systeem. Daarom is het beter om te vertrekken van het feit dat alle gra-

daties van hinder mogelijk zijn. Kennis kan de mogelijkheid van bepaalde

gradaties beperken als deze zeker niet kunnen optreden. Dit leidt tot het

gebruik van zekerheidsregels. Als implicator wordt de Kleene-Dienes im-

plicator gebruikt, een vooraanstaand lid van de S-implicatoren. De resul-

taten van regels die parallel zijn, worden samengevoegd met de minimum

driehoeksnorm zoals vereist door de theorie.

Elke verzameling parallelle regels resulteert in een benadering van de

hinder Hi voor i ∈ {1,2, . . . , n} met n het aantal verzamelingen met pa-

rallelle regels. Deze resultaten leggen beperkingen op aan de uiteindelijke
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possibiliteitsdistributie van hinder H, volgens een bepaalde variabele. Ui-

teraard moeten alle beperkingen samen in acht genomen worden. Hiertoe

zal de produkt driehoeksnorm gebruikt worden, omdat deze meer infor-

matie in rekening brengt dan de minimum driehoeksnorm.

Linguïstische benadering

Om het resultaat van de inferentie op een linguïstische manier uit te druk-

ken, kan men een beroep doen op de volgende benaderingsoperatoren, voor

elke term Lj uit de verzameling van termen L die in aanmerking komen om

H mee te benaderen [51],

D+H(Lj) = sup
h∈H

T (H(h), Lj(h)) D∗H(Lj) = inf
h∈H

I(Lj(h),H(h)) (8)

De bovenbenadering D+H berekent de consistentie tussen H en elke term,

terwijl de benedenbenadering D∗H de termen verzamelt die in een bepaalde

mate bevat zijn in H.

Men kan ofwel de possibiliteitsdistributie van de linguïstische benade-

ringπL volledig behouden ofwel één enkele term selecteren, de term met de

hoogste possibiliteitsgraad. Beide methodes zullen hier gebruikt worden.

Als operator voor de benadering zal de bovenbenadering (met de minimum

driehoeksnorm) en de benedenbenadering (met de Kleene-Dienes implica-

tor) aangewend worden. De resulterende possibiliteitsdistributies zullen

respectievelijk genoteerd worden als π+L en π∗L .

3.1.4 Regelkwalificaties

Uiteraard zullen niet alle regels evenveel invloed hebben op het resultaat

en zullen sommige regels al meer onzeker zijn dan andere. Zo zullen de

regels omtrent de blootstelling aan geluid wellicht belangrijker en ook be-

ter gekend zijn dan de leeftijdsregels. Om dit in rekening te brengen, kan

men de regels of de proposities wijzigen met kwalificaties [192], bv. “...is

mogelijk” en “...is vrij zeker”. Een kwalificatie impliceert een relatie tus-

sen een gekwalificeerde uitdrukking en een niet-gekwalificeerde uitdruk-

king [191]. Beschouw een variabele X over een universum U en de twee

proposities “X = A1 is (tenminste) λ1-zeker” en “X = A2 is (tenminste)

λ2-mogelijk” met λ1, λ2 ∈ [0,1]. De relaties met de ongekwalificeerde pro-

posities “X = B1” en “X = B2”worden gegeven door [55],

(∀u ∈ U)(B1(u) = ISS,N (λ1, A1(u))∧ B2(u) = T (λ2, A2(u))) (9)

met T een driehoeksnorm en ISS,N een S-implicator. Aangezien we in de

geluidshinderadviseur vooral geïnteresseerd zijn in de zekerheid van re-

gels en hypothesen, zal elke regel een zekerheidskwalificatie krijgen. De
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zekerheidsgraad geeft aan in welke mate aan het antecedent van de regel

moet voldaan worden, om het consequent waar te maken. Zoals gebrui-

kelijk in toepassingen, zal de zekerheidskwalificiatie berekend worden op

het consequent in plaats van op de regel zelf [55]. Als implicator zal de

Kleene-Dienes implicator gebruikt worden.

3.1.5 Prestatiematen

Indien men niet alleen beschikt over invoergegevens voor de geluidshinder-

adviseur, maar via enquêtes ook het gerapporteerde geluidshinderniveau

L∗ kent, is het zinvol om de prestaties van het ontwikkeld model te con-

troleren.

Een klassiek, scherp model is correct als het de gerapporteerde term

exact kan voorspellen. Dit principe kan hier ook toegepast worden. Als de

linguïstische benadering enkel de best passende term als resultaat geeft,

kan deze term vergeleken worden met de gerapporteerde term. Op die ma-

nier bekomt men het percentage correcte voorspellingen als prestatiemaat.

In dit werk zijn we echter vertrokken van het standpunt dat hinder een

inherent vaag begrip is. Het heeft dus weinig zin om te eisen dat de best

passende term overeenkomt met de gerapporteerde. Zo kan het bijvoor-

beeld zijn dat twee of meer termen als bijna even goed mogelijk naar voor

komen. Men moet in feite de ganse possibiliteitsdistributie πL in rekening

brengen om de mate waarin het resultaat niet verkeerd is en de nauwkeu-

righeid ervan te beoordelen. Hiertoe kan men een vage extensie van “vals

negatief” beschouwen. Vals negatief drukt de mate uit waarin het gerap-

porteerde label L∗ niet aanzien wordt als een mogelijke benadering van het

resultaatH, zijnde 1−πL(L∗). Maar enkel deze prestatiemaat beschouwen,

neigt naar een systeem dat besluiteloos is. Geen enkele term uitsluiten zou

altijd goed zijn. Hiervoor kan de niet-specificiteit van πL [116] een oplos-

sing bieden (zie formule 2). Als meerdere termen even goede benaderingen

zijn met even hoge possibiliteit, dan zal de niet-specificiteit hoog zijn en

op een mindere prestatie duiden.

3.1.6 Regels aanpassen

Men kan gebruik maken van de resultaten van geluidshinderstudies om de

zekerheidskwalificaties van de regels op een automatische manier te laten

bepalen zodat een foutmaat geminimaliseerd wordt. Dit maakt het ook

mogelijk om regelhypothesen te testen. Als een regel slecht presteert, zal

zijn zekerheidskwalificatie heel klein worden zodat de regel geen enkele

invloed meer zal hebben op het resultaat. Voor de optimalisatie van deze
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gewichten, in een multi-modale, niet lineaire zoekruimte, kan een genetisch

algoritme (GA) gebruikt worden.

Voor de optimalisatie van de “scherpe” prestatie, kan men volgende

foutmaat gebruiken.

eC =

N
∑

k=1

m
max
j=1
Lkj≠L

k∗

(πL(L
k
j ))−πL(Lk∗)

p(Lk∗)

N
∑

k=1
Lkp≠L

k∗

∣

∣

∣

m
max
j=1
Lkj≠L

k∗

(πL(L
k
j ))−πL(Lk∗)

∣

∣

∣

p(Lk∗)

+
N
∑

k=1
Lkp≠L

k∗

α

p(Lk∗)
(10)

waarbij de index k over alle N records in de gegevens loopt. De probabi-

liteitsdistributie p geeft de probabiliteit van het voorkomen van een term

in de gegevens. Lp en L∗ staan respectievelijk voor de voorspelde en ge-

rapporteerde term. De noemer is nodig om de linguïstische benadering te

normaliseren, anders kan men een benadering met overal kleine possibili-

teitsgraden bekomen. De parameter α is een bijkomende foutbonus voor

elke verkeerde voorspelling, bv. α = 0.1.

De optimalisatie van de vage prestatiemaat kan gebruik maken van de

volgende foutmaat die beide componenten van de prestatiemaat in reke-

ning brengt, met α ∈ [0,1].

eF =
N
∑

k=1

α(1−πkL (Lk∗))2 + (1−α)(N(πkL ))2
p(Lk∗)

(11)

Het in rekening brengen van de probabiliteit van de labels is nodig om

de ongelijke verdeling van geluidshinderniveaus te compenseren. Gelukkig

komen de hoge niveaus minder vaak voor dan de lage, hoewel ze minstens

even belangrijk zijn om met het model correct te voorspellen.

3.1.7 Bouwstenen

In het conceptueel geluidshindermodel werden groeperingsindicatoren ge-

bruikt om mensen met eenzelfde gedrag voor bepaalde karaktereigenschap-

pen te groeperen. Het is voordelig om de vaagregelbank op dezelfde manier

te structureren (zie figuur 7). Voor dergelijke tussenliggende variabelen,

zoals bv. gevoeligheid aan geluid, kan op die manier een apart submodel

gebouwd worden, gebaseerd op zijn groeperingsindicatoren. Het laat toe

om subjectieve, tussenliggende variabelen te ontrafelen in meer objectieve

variabelen. Hierdoor kunnen bepaalde variabelen (bv. leeftijd) meerdere
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keren voorkomen als zij hinder langs meerdere associaties beïnvloeden,

soms zelfs in tegenstrijdige richting. Wanneer gegevens over zo’n tussen-

liggende variabelen beschikbaar zijn uit enquêtes, kunnen de gewichten

van deze submodellen ook afzonderlijk geoptimaliseerd worden. In deze

hiërarchische structuur kan men de uitvoer van de submodellen gebruiken

als invoer voor de rest van het model ofwel rechtstreeks de gerapporteerde

gegevens gebruiken. Eventueel kan men ook de uitvoer van submodellen

linguïstisch benaderen naar een term uit de enquête en deze term als in-

voer gebruiken. Bemerk dat in deze laatste aanpak, de onnauwkeurigheid

en onzekerheid van het deelresultaat verloren gaan.

ModelGeslacht

Leeftijd

Aantal

kinderen

Hinder
door

wegverkeer

Geluids-

blootstelling

Afstand tot

bron

Gevoeligheid

Leeftijd

Verstedelijking

...

Model
Hinder door
treinlawaai

...

Figuur 7: Hiërarchische structuur van de vaagregelbank.

3.1.8 Invloed van inferentiesystemen

De optimalisatie van de gewichten vereisen een groot aantal evaluaties van

het model. De snelheid van het model is dus belangrijk. Helaas zijn de ze-

kerheidsregels heel rekenintensief aangezien ze de expliciete opbouw van

de vaagrelatie R die de regel voorstelt vereisen. Doordat de zekerheidskwa-

lificatie van elke regel voortdurend kan veranderen, kunnen de vaagrelaties

ook niet herbruikt worden. Een eerste methode om de uitvoering van het

model te versnellen, is de zekerheidskwalificatie toepassen op het resultaat

van de regel in plaats van op de regel zelf. Het resultaat is immers zo zeker

als de regel zelf is. Het voordeel is dat men nu inderdaad de vaagrelaties

eenmalig vooraf kan berekenen. Wanneer men de Kleene-Dienes implica-

tor IKD gebruikt voor zowel de regel als de zekerheidskwalificatie, staaft

de volgende (bewezen) stelling dat de resultaten dan zelfs identiek zijn.
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Stelling. Beschouw de regel “Als X = A Dan Y = B Is λ Zeker” met X en

Y variabelen respectievelijk over de universa U en V , A en B vaagverzame-

lingen over respectievelijk U en V en λ ∈ [0,1]. De invoer van de regel is

een genormaliseerde vaagverzameling A′ over U .

sup
u∈U

min
(

A′(u), IKD(A(u), IKD(λ, B(v)))
)

= IKD
(

λ, sup
u∈U

min(A′(u), IKD(A(u), B(v)))
)

(12)

Een experimentele snelheidsvergelijking in [165] toonde een snelheids-

winst van factor twee aan.

Een tweede manier om het model te versnellen is overschakelen op pos-

sibiliteitsregels. Deze regels gebruiken een driehoeksnorm (meestal het mi-

nimum) als implicator. Er bestaat een heel snel en eenvoudig algoritme om

resultaten van dergelijke regels te berekenen, eveneens zonder een explicie-

te uitdrukking van de vaagrelatie R. Het verschil in semantiek mag echter

niet verwaarloosd worden. Zo verliest men bij het gebruik van een com-

mutatieve driehoeksnorm als inferentie operator de causaliteit die door de

implicatie uitgedrukt wordt. Als de richting van de causaliteit belangrijk

is, kunnen deze possibiliteitsregels dus niet gebruikt worden. Dit infe-

rentiealgoritme levert nogmaals een factor twee snelheidswinst op [165].

Onderzoek naar de voorspellingsprestatie van beide inferentiesystemen op

eenzelfde model met eenzelfde verzameling gegevens, toonde aan dat de

verschillen kleiner zijn dan 1 % in functie van het gewogen gemiddelde van

correct voorspelde termen [165]. De gewichten van de regels kunnen blijk-

baar het verschil in semantiek van de regels compenseren.

3.2 Hinderaccumulatie

3.2.1 Inleiding

Mensen zijn zelden blootgesteld aan slechts één brontype (bv. wegverkeer),

meestal is het omgevingslawaai samengesteld uit diverse types van geluids-

bronnen, zoals bv. wegverkeer, treinverkeer, industrie,... die samen of op-

eenvolgend optreden. Uit laboratoriumexperimenten is gebleken dat het

“ergste bron” model momenteel de beste indicatie kan geven van deze ac-

cumulatie van hinder. Toch zijn er belangrijke verschillen tussen labo-

ratoriumsimulaties en de ervaring van hinder in veldstudies. Een van de

belangrijkste verschilpunten is het zogenaamde “compromis-principe” of

“gecombineerde-geluidsbronnenparadox”. Dit principe stelt dat in veldstu-

dies de gerapporteerde geaccumuleerde hinder over het algemeen lager is
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dan verwacht, zelfs lager dan de hinder veroorzaakt door een van de bron-

nen alleen [134] [13]. Dit is bijna nooit zo in laboratoriumstudies [11], waar

de geluiden altijd terzelfder tijd afgespeeld worden.

Het “ergste-bron” model wordt gegeven door

Ht =
S

max
s=1

(Hs) (13)

waarbijHs de hinder van een bepaald brontype s voorstelt, enHt de geac-

cumuleerde hinder is. Helaas is de theoretische achtergrond van dit model

redelijk zwak omdat het onderliggend cognitief proces niet duidelijk is.

3.2.2 Vaagregelgebaseerd model

Hier zal een vaagmodel voor accumulatie van geluidshinder opgesteld wor-

den, met bijzondere aandacht voor het onderliggend cognitief proces. Al-

gemeen, kan men in een accumulatiemodel de processen uit figuur 8 on-

derscheiden. Tijdens de perceptie registreren onze zintuigen de geluiden.

Accumulatie

Perceptie Evaluatie Beslissing

Beslissing

Ls

Lt

G
e

ra
p

p
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rt
e

e
rd

 i
n

 e
n

q
u

ê
te



Figuur 8: Verschillende processen van een accumulatiemodel.

In het evaluatieproces worden ze geëvalueerd in ons referentiekader. Via

de stippellijnen van figuur 8 worden de evaluaties geaccumuleerd tot een

globale evaluatie. Uiteindelijk wordt tijdens de beslissingsfase uitgemaakt

welk niveau van geluidshinder gerapporteerd wordt, als men daarnaar ge-

vraagd wordt. Om een accumulatiemodel gemakkelijk te kunnen testen

met behulp van gegevens afkomstig van een enquête, zal hier de volgende

veronderstelling gemaakt worden. We nemen aan dat de evaluatiefase ge-

volgd wordt door een beslissingsfase voor elk type bron afzonderlijk, en

dat uiteindelijk de resultaten van deze beslissingen geaccumuleerd wor-

den. Dit gaat ervan uit dat de effecten van de beslissingsprocessen voor de

bronnen verwaarloosbaar zijn, in combinatie met de globale beslissingsfa-

se.
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Vertrekkende van het ergste bron model, kan men het cognitief accumu-

latieproces schrijven zonder de maximumoperator te gebruiken. Dit leidt

tot volgende regels.

ALS hinder door een van de bronnen is extreem
DAN globale hinder is extreem.

ALS hinder door een van de bronnen is erg
DAN globale hinder is erg
TENZIJ globale hinder is al extreem.

ALS hinder door een van de bronnen is matig
DAN globale hinder is matig
TENZIJ globale hinder is al erg of extreem.

...

De ALS-DAN-TENZIJ regels kunnen in binaire logica als volgt geformu-

leerd worden, voor Hs de hinder van de bronnen s ∈ {1,2, . . . , S}, L =
{L1, L2, . . . , Lm} de hindertermen (bv. “helemaal niet”, “een beetje”, “tame-

lijk”, “erg”, “extreem”) en j =m,m− 1, . . . ,1,

Als





S
∨

s=1

(Hs = Lj)


∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Dan A(m−j+1) = Lj (14)

H (m−j+1)
t =

m−j+1
∨

i=1

A(i) (15)

met A(i) de hinderbijdrage van regel i, de initiële H (0)
t geen enkele van de

hindertermen en de totale geaccumuleerde hinder Ht =H (m)
t .

De gevonden formulering van het onderliggend cognitief accumulatie-

proces van het ergste bron model, kan nu op een eenvoudige manier ver-

vaagd worden tot een vaagregelgebaseerd systeem. Dit heeft als belangrijk

voordeel dat er beter kan rekening gehouden worden met de onnauwkeu-

righeden en onzekerheden die inherent aanwezig zijn in het concept ge-

luidshinder. De componenten van zo’n systeem worden hieronder kort

toegelicht (zie figuur 6).

Databank Een eerste stap in de vervaging van het binair model, bestaat uit

het vervagen van de linguïstische termen in de antecedenten en conse-

quenten van de regels. Hiervoor wordt opnieuw beroep gedaan op de

lidmaatschapsfuncties die met de vervagingsmethode uit sectie 2.3.3

geconstrueerd zijn. Deze zijn immers erg geschikt voor gebruik in

vaagregelgebaseerde systemen.
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Regelbank In plaats van direct de regels (14) te gebruiken, wordt het eerste

antecedent ontvouwd tot aparte regels. Hierdoor wordt de disjunctie

van hindertermen van een bron vervangen door een disjunctie van

regels die betrekking hebben op één bepaalde bron. Dit geeft meer

controle over de bijdrage van elke bron wat later handig zal blijken.

Na deze ontvouwing zien de regels er als volgt uit, voor elke s ∈
{1,2, . . . , S},

Als (Hs = Lj)∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Dan A(m−j+1)
s = Lj (16)

Inferentie In sectie 3.1.3 werden de verschillende interpretaties van vaag-

regels besproken. Het accumulatieproces is duidelijk een proces dat

informatie verzamelend: elke regel maakt een niveau van hinder mo-

gelijk. We hebben hier dus te maken met mogelijkheidsregels. De

voorstelling van de regel zal berekend worden met de minimum drie-

hoeksnorm. Dit betekent dat men ook het snelle inferentiealgoritme

kan implementeren.

Voor de conjunctie van de antecedenten, komt elke driehoeksnorm in

aanmerking. Een kleine driehoeksnorm zal de mate waarin de regels

afgevuurd worden verkleinen (behalve de eerste regel). Gelet op het

“compromis principe” is dit niet aangewezen, daarom zal het mini-

mum, de grootste driehoeksnorm, hier gebruikt worden.

Tot slot, de disjunctie van de resultaten per bron en uiteindelijk ook

per geluidshinderniveau zal gemodelleerd worden met de maximum

driehoeksconorm.

Figuur 9 toont het ganse inferentieproces.

Linguïstische benadering Net zoals in sectie 3.1.3 zal voor de linguïsti-

sche benadering van de berekende possibiliteitsdistributie Ht naar

een term, beroep gedaan worden op de boven- en benedenbenade-

ringsoperatoren. De resulterende possibiliteitsdistributies over de

termen, respectievelijke genoteerd als π+L en π∗L , kan men volledig in

rekening nemen, ofwel enkel de best passende term (met de hoogste

possibiliteitsgraad) beschouwen. De eerste methode zal vooral nuttig

zijn om de resultaten te vergelijken met andere, scherpe modellen.

De tweede methode respecteert de vaagheid van het hinderconcept

beter en maakt een interpretatie in functie van vals negatief en de

niet-specificiteit mogelijk (zie sectie 3.1.3).

In het huidig model hebben alle bronnen evenveel impact op het resul-

taat. Dit is uiteraard niet erg realistisch. In sectie 3.1.4 werden enkele soor-
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Figuur 9: Structuur van een vervaagd, regelgebaseerd accumulatie model.

ten van regelkwalificaties besproken. Elke regel in het model garandeert

de mogelijkheid van een bepaald hinderniveau op basis van een bron. De

mogelijkheidskwalificatie λ ∈ [0,1] (op basis van de minimum driehoeks-

norm) is daarom het meest aangewezen. Deze kwalificatie drukt uit in wel-

ke mate het consequent gegarandeerd mogelijk is als aan het antecedent

voldaan is. Voor elke combinatie van een type bron en een geluidshinder-

niveau is er een regel in het model. Er zijn dus λs,j voor s ∈ {1,2, . . . , S}
en j ∈ {1,2, . . . ,m} parameters nodig. Om dit aantal enigzins binnen de

perken te houden, veronderstellen we λs,j = λs · λj , waarbij λs ∈ [0,1]

afhangt van de bron en λj ∈ [0,1] afhangt van het geluidshinderniveau.

Deze veronderstelling is zinvol aangezien de invloed van een bron gelijk

zal zijn voor alle hinderniveaus en de invloed van een hinderniveau gelijk

zal zijn voor alle bronnen.

De gewichten van de regels kunnen automatisch bepaald worden op ba-

sis van enquêtegegevens die de gerapporteerde totale geluidshinder alsook

de gerapporteerde geluidshinder per afzonderlijke bron bevatten. Hiervoor

kan een genetisch algoritme gebruikt worden, dat een foutmaat minimali-

seert. Dezelfde foutmaten als beschreven in sectie 3.1.6 kunnen hier ook

dienst doen.

Voor de inschatting van de geluidshinder veroorzaakt door een aantal

afzonderlijke brontypes, kan uiteraard ook beroep gedaan worden op het

model beschreven in sectie 3.1.
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3.2.3 Aggregatie met vaagintegralen

Het probleem van de hinderaccumulatie zal hier benaderd worden als een

multi-criteria beslissingsprobleem. In deze theorie evalueert men verschil-

lende beslissingsalternatieven op basis van diverse criteria [119]. Wanneer

met elk alternatief een vooraf gedefiniëerde categorie overeenstemt, dan

spreekt men over een classificatieprobleem. Om tot een beslissing te ko-

men, worden diverse criteria U = {u1, u2, . . . , un} met n ∈ N \ {0} ge-

ëvalueerd op basis van een evaluatiefunctie f . Deze evaluaties worden

vervolgens geaggregeerd om tot een globale evaluatie van het doelcriteri-

um v te komen, D(v) = G(f(u1), f (u2), . . . , f (un)) met G een aggregatie

operator.

In het hindermodel zal de hinder van elke bron een criterium zijn dat

geëvalueerd wordt om tot de globale hinderevaluatie te komen. Noteer de

verzameling van alle bronnen als S = {r1, r2, . . . , rS}. Als evaluatiefunctie

gebruiken we f : S → Ls = {0 = ls1 ≺ ls2 ≺ . . . ≺ lsm = 1} ⊆ [0,1] met

m ∈ N het aantal linguïstische termen en lsj de evaluatie van de hinderterm

voor bron s. De relatie ≺ definiëert een orderelatie op de hinderniveaus.

De verzamelingen Ls leggen een ordinale schaal vast voor de hindertermen

afkomstig van bron s. In navolging van hinderstudies waarbij deze ordinale

schaal meestal onafhankelijk is van de bron, stellen we L = L1 = . . . =
LS . Deze schaal zal ook gebruikt worden voor de evaluatie van de globale

hinder. Bemerk dat men voor de ordinale schaal L het bestaan van een

onderliggende kardinale schaal kan vooropstellen, zoals bv. het geval was

in de internationale hinderschaalstudie [65].

Een flexibele aggregatie operator kan gevonden worden in de vorm van

vaagintegralen, de Choquet-integraal en de Sugeno-integraal. Dit zijn veral-

gemeningen van de klassieke integraal waarbij de onderliggende maat niet

noodzakelijk additief is. Men spreekt in dit geval over een vaagmaat. Een

vaagmaat µ is een functie over P(U), met P(U) de machtsverzameling van

een universum U , die aan elke deelverzameling van U een bepaald gewicht

in het interval [0,1] toekent, en voldoet aan een grensvoorwaarde, een nor-

meringsvoorwaarde, monotoniteit en continuïteit. Door het wegvallen van

de additiviteit heeft men een grote flexibiliteit, bv. om de combinatie van

twee elementen een veel groter of kleiner gewicht toe te kennen dan het

gewicht van de elementen afzonderlijk. Wanneer een vaagintegraal Gµ ge-

bruikt wordt als aggregatie operator levert dit voor de hinderaccumulatie

d = D(Ht) = Gµ(f ), waarbij d ∈ [0,1] een evaluatie is van de globale

hinder. Om de resulterende classificatie in functie van de hindertermen te

bepalen, kan men de elementen in L beschouwen als punten in het midden

van intervallen die corresponderen met een bepaalde term. De klasse l ∈ L
wordt gekozen als de waarde d in dit interval valt, noteer d′ = l. Hoewel
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de Sugeno-integraal enkel gebruik maakt van de eigenschappen van de or-

dinale schaal, zal deze aanpak ook voor de Sugeno-integraal gehanteerd

worden, zoals in de praktijk vaak gebeurt [30].

De vaagmaat zal met een genetisch algoritme automatisch geëxtraheerd

worden op basis van enquête resultaten [171]. Veronderstel N records

van de vorm (f (r1), f (r2), . . . , f (rS), d
∗)met d∗ de gerapporteerde globa-

le hinder. Een te minimaliseren foutmaat die de ongelijke verdeling van

optreden van globale hinderniveaus compenseert, is gegeven door,

e =
N
∑

k=1

(dk − d∗k )2
p(d∗k )

+
N
∑

k=1
d′k 6=d∗k

α

p(d∗k )
(17)

met p de probabiliteitsdistributie van de globale hindertermen in de enquê-

tegegevens enα een experimenteel bepaalde foutbonus voor elke verkeerde

classificatie.

Het bepalen van een vaagmaat impliceert het bepalen van 2n−2 parame-

ters met n het aantal criteria. Voor een groot aantal criteria, in hinderstu-

dies typisch rond de 20, is dit niet haalbaar. Er zijn dus andere methodes

nodig om een vaagmaat te definiëren met behulp van minder parameters.

Twee mogelijkheden worden telkens in combinatie met een vaagintegraal

geïllustreerd, via een relatie (met de Choquet-integraal) en via een alterna-

tieve representatie (met de Sugeno-integraal).

Als de vaagmaat van combinaties van elementen kan berekend wor-

den uit de vaagmaat van de singletons met volgende relatie, µ(A ∪ B) =
S(µ(A), µ(B)) met S een driehoeksconorm, en A,B ⊆ U dan spreekt men

over een veralgemeende possibiliteitsmaat. In [180] wordt een algoritme

beschreven waarmee de Choquet-integraal Cµ(f ) heel gemakkelijk kan be-

rekend worden op basis van zo’n maat, namelijk,

Cµ(f ) = wTb =
n
∑

j=1

wj bj (18)

met b de n-dimensionale geordende vector zodat de j-de component het

j-de grootste argument f(ui) is en w een n-dimensionale vector gewich-

ten. Deze worden gegeven door wj = µ(H(j)) − µ(H(j−1)) voor alle j ∈
{1,2, . . . , n}met H(j) de deelverzameling van de criteria met de j-de hoog-

ste evaluatiewaarden en H(0) = ∅. Merk op dat zowel b als w veranderen

voor verschillende evaluaties van criteria. Gezien het sterke verband tussen

de hinderaccumulatie en de maximumoperator, lijkt de gewone possibili-

teitsmaat met S de maximum driehoeksconorm een goede keuze. In dit
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geval worden de gewichten gegeven door,

wj = max(µ(uj)−
j−1
∑

i=1

wi,0) (19)

In dit model moeten slechts n parameters in [0,1] bepaald worden om de

ganse vaagmaat te definiëren. In het genetisch algoritme kan een individu

(een potentiële oplossing) voorgesteld worden met een chromosoom dat

bestaat uit een rij van n reële getallen.

Een tweede mogelijkheid om de parameters van een vaagmaat te redu-

ceren, steunt op een alternatieve representatie, zoals bv. met de possibilis-

tische Möbius-transformatie [118]. Dit is een transformatie van een func-

tie µ over P(U) naar een functie m∨ gedefiniëerd als m∨(A) = µ(A) als

µ(A) > maxB⊂A µ(B), anders m∨(A) = 0, voor elke A ⊆ U . Er bestaat ook

een inverse transformatie, de Zeta-transformatie, Z∨m(A) = maxB⊆Am∨(B)
voor elke A ⊆ U .

Niet elke functie over P(U) is de possibilistische Möbius-representatie

van een vaagmaat. In [45] werd bewezen dat volgende voorwaarden moe-

ten voldaan zijn: de grensvoorwaarde,m∨(∅) = 0, de normaliseringsvoor-

waarde, maxA⊆Xm∨(A) = 1 en de monotoniteit, (∀A ∈ P(U))(m∨(A) ≤
maxB⊂Am∨(B) ⇒ m∨(A) = 0). Een vaagmaat waarvan zijn possibilisti-

sche Möbius getransformeerde voldoet aan m∨(A) = 0 voor elke A ⊆ U

met |A| > k voor een k ∈ {1,2, . . . , n} en er op zijn minst één deelver-

zameling B van U bestaat met |B| = k zodat m∨(B) 6= 0, noemt men een

k-maxitieve vaagmaat [118].

De Sugeno-integraal Sµ(f ) kan eenvoudig berekend worden op basis van

de possibilistische Möbius-representatiem∨ van een k-maxitieve maat [113],

Sµ(f ) = max
A⊆U

min



m∨(A),
∧

i∈A
f(ui)



 (20)

Een k-maxitieve vaagmaat is volledig bepaald door
∑k
i=1

(

n
i

)

parame-

ters [30]. Hoewel dit aantal veel kleiner is dan 2n − 2 is het toch nog aan-

zienlijk veel voor grote n. Daarom zal de optimalisatie van k-maxitieve

vaagmaten zich beperken tot k = 2.

Voor elke A ⊆ U bevat het chromosoom dat de possibilistische Möbius

getransformeerde vaagmaat in het genetisch algoritme voorstelt, een gen

met een reëel getal in [0,1]. Voor 2-maxitieve maten zijn er dus genen gr
die bij een singleton {ur} horen en genen gpq die bij een niet-geordend paar

{up, uq} horen, met p 6= q en p,q, r ∈ {1,2, . . . , n}. Om ervoor te zorgen

dat er enkel geldige vaagmaten in beschouwing genomen worden, wordt

de possibilistische Möbius vaagmaat op basis van deze interne voorstelling
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berekend als

m∨({ur}) = gr (21)

m∨({up, uq}) =






m̄+ (1− m̄)gpq als gpq 6= 0

0 als gpq = 0
(22)

met m̄ = max
(

m∨({up}),m∨({uq})
)

. Enkel de normalisatievoorwaarde

moet dan nog voldaan worden door te delen door het maximum van de

m∨ waarden. Na de normalisatie wordt de vaagmaat terug gecodeerd naar

de interne representatie om zinvolle kruisingen in het genetisch algoritme

mogelijk te maken.

4 Resultaten

Om de ontwikkelde hindermodellen te valideren en de gewichten automa-

tisch te laten bepalen, zijn enquêtegegevens nodig, die zowel de nood-

zakelijke invoergegevens als de gerapporteerde hinderniveaus bevatten.

Twee dergelijke enquêtes waren beschikbaar. Enkele resultaten die met

de modellen bekomen werden, zullen hier kort besproken worden. Tenzij

anders vermeld werd telkens de snellere implementatie van het inferen-

tiesysteem met possibiliteitsregels gebruikt. Deze resultaten werden al

gerapporteerd in internationale tijdschriften [18] [25] [26] en op conferen-

ties [17] [22] [23] [24] [15] [158] [159] [160] [163] en [164].

4.1 Enquêtes

Een eerste enquête is afkomstig van een studie naar de gezondheidseffec-

ten door de aanleg van een nieuwe spoorweg in het Oostenrijks deel van de

Alpen, in de buurt van Innsbruck. In dit landelijk gebied met kleine dorpen,

zijn wegverkeer en treinverkeer de belangrijkste geluidsbronnen. De tele-

fonische enquête heeft 2007 inwoners bevraagd. 1500 personen werden

willekeurig gekozen, de rest werd binnen een straal van 150 m rond de be-

staande spoorweg en hoofdweg of 50 m rond de lokale wegen geselecteerd

om te garanderen dat een voldoende aantal mensen aan hogere geluids-

niveaus blootgesteld zijn. Nadien werden de Ldn waarden gesimuleerd en

bijgesteld op basis van enkele meetgegevens. De vragen omtrent de erva-

ring van hinder maakten gebruik van vier hindertermen, “überhaupt nicht”

(“helemaal niet”, 1), “gering oder teilweise” (“matig”, 0.75), “mittelmäßig”

(“matig”, 0.34) en “stark oder erheblich” (“ernstig”, 0.67). De nederland-

se vertalingen op basis van de automatische vertalingsapplicatie uit sec-



lii SAMENVATTING

tie 2.4 en de gevonden similariteitsgraad staan tussen haakjes. De Duitse

termen komen niet overeen met de termen zoals voorgesteld in de inter-

nationale hinderschaalstudie [65]. Vooral “teilweise” en “mittelmäßig” lig-

gen vrij dicht bij elkaar wat ook blijkt uit de Nederlandse vertalingen, met

het bijkomende probleem dat er geen goede Nederlandse termen bestaan

voor de middelste gradaties van hinder. Vandaar dat de geconstrueerde –

symmetrische Gaussiaanse– lidmaatschapsfuncties lichtjes aangepast wer-

den, zie figuur 10.

Een tweede gegevensverzameling werd bekomen uit een Vlaamse enquê-

te die per post uitgevoerd werd bij 3200 mensen. Het onderwerp van de

studie was de invloed van geluid, geur en te veel licht op de leefomgeving.

De personen die op vrijwillige basis hun adres opgeschreven hadden (1709

in totaal), werden gelokaliseerd met behulp van een Geografisch Informatie

Systeem (GIS). Voor deze personen werden de wegverkeer en treinverkeer

Ldn geluidsniveaus berekend en bijgesteld op basis van meetresultaten. Bo-

vendien werden ook andere geografische variabelen bepaald, zoals bv. het

landgebruik. Naast een vraag naar de algemene geluidshinder, bevatte de-

ze enquête ook een vraag naar de geluidshinder veroorzaakt door een aan-

tal individuele geluidsbronnen. Deze gegevens zijn nuttig voor de validatie

van de accumulatiemodellen. De hinderschaal bestond uit vijf termen, “he-

lemaal niet”, “een beetje”, “tamelijk”, “ernstig” en “extreem”. Hoewel deze

schaal niet identiek is aan de termen voorgesteld in [65], zijn de verschil-

len vrij klein. De asymmetrische Gaussiaanse lidmaatschapsfuncties zijn

getoond in figuur 10.

4.2 Voorspellen van hinder door verkeer

Alle kennis die in het systeem opgeslagen is, de vaagregels die de relaties

tussen variabelen uitdrukken, werden geformuleerd door experten in het

domein van de akoestiek. De regels zijn een instantie van de associaties die

in het conceptueel hindermodel geïdentificeerd werden (zie sectie 3.1.2).

De regels zelf worden niet aangepast aan de gegevens. Dit garandeert een

stabiel model, onafhankelijk van welbepaalde gegevens. Enkel de zeker-

heidsgraden van de regels worden automatisch aangepast, wat nodig is om

het testen van hypotheses mogelijk te maken.

De resultaten van een model voor wegverkeer en treinverkeer op ba-

sis van de Oostenrijkse gegevens, zijn samengevat in tabel 4. Het model

werd hierbij ingesteld om het (scherpe) gewogen percentage correcte voor-

spellingen te optimaliseren (met de bovenbenadering om de best passende

term te vinden). De tabel geeft telkens ook de vergelijking met multivaria-

te regressie. Er wordt onderscheid gemaakt tussen het gebruik van regels
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Figuur 10: Links: Representatie van de vier Duitse hindertermen (“über-

haupt nicht”, “teilweise”, “mittelmäßig”, “erheblich”). De oorspronkelijke

curven voor “teilweise” en “mittelmäßig” staan in stippellijn. Rechts: Re-

presentatie van de vijf Nederlandse hindertermen (“helemaal niet”, “een

beetje”, “tamelijk”, “ernstig”, “extreem”).

op basis van subjectieve invoer en zonder dergelijke regels. Dit is nodig

omdat men moet oppassen dat men geen variabelen gebruikt die mogelijks

ook bijdragen tot het antwoord op de hindervraag. Een voorbeeld van zo’n

subjectieve variabele is de gerapporteerde geluidsgevoeligheid.

Tabel 4: Resultaten na optimalisatie met scherpe prestatiematen op de

Oostenrijkse gegevens.

Model Wegverkeer Treinverkeer

Lineaire regressie met DNL 29.5 % 30.2 %

Vaagmodel / geen subjectieve invoer 41.1 % 43.8 %

Regressie / geen subjectieve invoer 36.8 % 37.0 %

Vaagmodel / subjectieve invoer 43.0 % 45.3 %

Regressie / subjectieve invoer 40.0 % 38.6 %

De invloed van de parameter α bij de optimalisatie van een model voor

de vage prestatiematen, vals negatief en niet-specificiteit, zal geïllustreerd

worden met een model voor hinder door wegverkeer op basis van de Vlaam-

se gegevens. Voor de linguïstische benadering werd de benedenbenadering

gebruikt. Met een hoge α kan men een model bekomen dat niet fout is (in

een vage interpretatie) maar redelijk niet-specifiek. Een lage α resulteert

in een specifiek model maar ten koste van meer foutieve voorspellingen.
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De linkse figuur 11 toont een specifiek model dat vaak fout is. De rechtse

figuur geeft de resultaten van een meer onzeker model dat echter minder

vaak de gerapporteerde term uitsluit.
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Figuur 11: Verdeling van de testpersonen over een vals negatief versus niet

specifiek vlak voor een model met α = 0.75 (links) en α = 0.99 (rechts). De

grootte van de cirkels is proportioneel met het aantal personen.

Verdere analyse van de resultaten toonde aan dat een combinatie van la-

ge niet-specificiteit en geen vals negatief, enkel kan bekomen worden wan-

neer de hinderniveaus “helemaal niet” of “extreem” voorspeld worden. Dit

is eenvoudig te verklaren. Ook voor de menselijke expert is het gemakke-

lijker om een zeker oordeel te vellen over de uiterste hinderniveaus. Een

zekere uitspraak doen over de middenste hinderniveaus is veel moeilijker.

Het vergelijken van de resultaten van enquêtes is typisch een moeilijk

probleem voor de klassieke methodes. Dit is te wijten aan de vele ver-

schillen tussen de manier waarop de enquêtes opgesteld zijn, zoals bv.

verschillen in taal, verschillende keuzes van termen (als het enquêtes in

dezelfde taal betreft) en verschillende hinderschalen (bv. vier termen ver-

sus vijf termen of numerieke schalen). Dankzij een uniforme voorstelling

van hindertermen als vaagverzamelingen, vormen deze verschillen geen

struikelblok voor het vaagmodel. Om de algemeenheid van hindermodel-

len te testen, werd een model voor de hinder door treinverkeer, op basis van

Ldn en de afstand tot de spoorweg, vergeleken voor de Oostenrijkse en de

Vlaamse gegevens. Hierbij werd de similariteitsmaat uit de automatische

vertalingsapplicatie gebruikt voor de linguïstische benadering naar de best

passende term (zie sectie 2.4). De resultaten zijn samengevat in tabel 5.

Het model werd telkens geoptimaliseerd op basis van de Vlaamse gegevens

en vervolgens ongewijzigd uitgevoerd voor de Oostenrijkse gegevens (zelf-

de zekerheidsgraden van de regels). Intern in het model werden voor de
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antecedenten en consequenten van de regels enkel –taalonafhankelijke–

stuksgewijs-lineaire vaagverzamelingen gebruikt. Linguïstische benade-

ring van de modeluitvoer naar de taalafhankelijke vaagverzamelingen op

basis van de vervagingsmethode levert de beste resultaten op. Wanneer

de uitvoer benaderd wordt met stuksgewijs–lineaire vaagverzamelingen

op een gelijke afstand van elkaar (vier voor de Oostenrijkse en vijf voor

de Vlaamse) of met de vaagverzamelingen op basis van de probabilistische

methode, dan daalt de prestatie evenredig. Dit betekent dat de voorstelling

van de termen wel degelijk belangrijk is en dat de vervagingsmethode rea-

listische vaagverzamelingen produceert. Aangezien de resultaten dicht bij

elkaar liggen, bewijst dit de algemeenheid van het model. Eenzelfde con-

clusie werd bekomen bij het vergelijken van de foutmaat na optimalisatie

voor de vage prestatiemaat.

Tabel 5: Gewogen percentage correcte voorspellingen in een model dat

voor de Vlaamse gegevens geoptimaliseerd werd.

Linguïstische termen Vlaams Oostenrijks

Nauwkeurige voorstelling 37.14 % 37.13 %

Stuksgewijs-lineaire voorstelling 34.07 % 34.03 %

Voorstelling met probabilistische methode 36.19 % 36.69 %

Als voorbeeld van de manier waarop de geluidshinderadviseur kan ge-

bruikt worden om hypotheses te testen, zal een model voor hinder door

treinlawaai beschouwd worden (op basis van de Oostenrijkse gegevens).

Wanneer een basismodel met regels die de invloed van fysische aspecten

van geluid beschrijven (Ldn, afstand tot bron,...) uitgebreid wordt met re-

gels die het maskeereffect in rekening brengen, dan wordt de fout kleiner.

Het fysiologisch maskeereffect treedt op als het geluid van een bron (bv.

wegverkeer) het geluid van een andere bron (bv. treinen) zodanig domineert

dat de tweede bron niet meer waargenomen wordt. Uit de analyses met

klassieke methodes weet men dat maskering enkel wordt waargenomen

bij hoge geluidsniveaus van beide bronnen, wat eigenlijk vreemd is [23].

Een uitbreiding met regels die de gerapporteerde gevoeligheid aan geluid

beschouwen, levert ook een kleinere fout. Bemerk dat men ook gebruik

kan maken van een submodel om de gevoeligheid te voorspellen op basis

van meer objectieve variabelen. Als men nu echter zowel de maskeerregels

als de gevoeligheidsregels toevoegt, wordt de fout niet meer kleiner (zie

tabel 6, tussen haakjes staat het verschil met de kleinste fout in de tabel).

Hieruit kan men afleiden dat beide verzamelingen regels eigenlijk hetzelfde
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beschrijven, of met andere woorden dat het geregistreerde maskeereffect

te wijten is aan het feit dat gevoelige mensen daar niet wonen. Als deze

hypothese klopt, dan moet het submodel voor gevoeligheid ook minder ge-

voeligheid voorspellen in situaties die met maskering overeenkomen. Een

toevoeging van een dergelijke regel bij het submodel voor gevoeligheid,

resulteert in een kleine toename (weinig mensen voldoen immers aan de

regel) van het gewogen percentage correct voorspelde gevoeligheid. Dit

bevestigt de hypothese.

Tabel 6: Vergelijking van de foutmaat met maskering- en gevoeligheidsre-

gels.

Zonder maskering Met maskering

Zonder gevoeligheid 15 (909) 7 (901)

Met gevoeligheid 2 (896) 0 (894)

4.3 Voorspellen van hinderaccumulatie

Voor de voorspelling van de geaccumuleerde hinder kunnen enkel de Vlaam-

se gegevens gebruikt worden, aangezien dit niet bevraagd werd in de Oos-

tenrijkse enquête. In totaal waren 2661 records volledig bruikbaar. De

Vlaamse enquête vermelde 21 verschillende bronnen van geluid, eventueel

kon de persoon zelf nog een bijkomende bron noteren maar deze extra

gegevens werden hier niet in beschouwing genomen. De relatieve frekwen-

tie van de globale hinderniveaus is 35.59 % (“helemaal niet”), 35.67 % (“een

beetje”), 18.19 % (“tamelijk”), 8.57 % (“ernstig”) en 1.99 % (“extreem”). De

resultaten van alle modellen zijn samengevat in tabel 7. Het beste scherpe

model, het “ergste-bron” model is ter referentie ook opgenomen. In fi-

guur 12 (links) wordt het geclassificeerde hinderniveau van dit model ver-

geleken met het gerapporteerde hinderniveau (voor globale hinder). De

percentages zijn gewogen om de aantallen in elke categorie in rekening te

brengen. De termen zijn weggelaten maar lopen van links naar rechts (“he-

lemaal niet”, “een beetje”, “tamelijk” “ernstig” en “extreem”) en van onder

naar boven. De resultaten van alle modellen zullen telkens op deze manier

gepresenteerd worden. Bemerk het effect van het “compromis-principe”,

waardoor elke categorie overschat wordt.

Het vaagregelgebaseerd model is een weinig beter dan het ergste-bron-

model. Dit is niet verwonderlijk aangezien dit model eigenlijk een recht-

streekse vervaging is van dit scherpe model. Het model overschat vooral
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Tabel 7: Gewogen percentages correct geclassificeerde hinderaccumulatie

voor verschillende modellen.

Model Resultaat (in %)

Scherpe ergst-bronmodel 55.5

Vaagregelgebaseerd model 59.0

1-maxitieve Choquet-integraal 61.3

1-maxitieve Sugeno-integraal 60.9

2-maxitieve Sugeno-integraal 61.4

de laagste hinderniveaus een stuk minder (zie figuur 12, rechts). Zowel het

model gebaseerd op de Choquet-integraal als de Sugeno-integraal preste-

ren gelijkaardig, en lichtjes beter dan het vaagregelgebaseerd model. Een

uitvoerige analyse van de gewichten berekent in het Choquet model, leert

dat bijna uitsluitend de bron die de hoogste hinder veroorzaakt een hoog

gewicht krijg. Alle andere gewichten zijn verwaarloosbaar klein. Dit toont

aan dat de hinderaccumulatie inderdaad “maxitief” van aard is (in over-

stemming met het scherpe ergste bron model). De Sugeno-integraal op ba-

sis van een 2-maxitieve maat is iets beter in vergelijking met een 1-maxitieve

maat. Dit geeft aan dat de hinder door twee bronnen samen een sterker ef-

fect op het cognitief accumulatieproces kan hebben dan het maximum van

de bronnen. Zie figuur 13 voor een grafische voorstelling van de resultaten

van de vaagintegraal modellen.

5 Besluit

In dit werk werd een grondige analyse van het concept geluidshinder uit-

gevoerd. Als uitgangspunt werd hinder beschouwd als een inherent vaag

concept, dat gemodelleerd wordt met de vaagverzamelingenleer. Deze aan-

pak dringt zich op omdat de mate waarin geluidshinder ervaren wordt niet

kan gemeten worden, hoewel mensen er wel met elkaar kunnen over com-

municeren met behulp van natuurlijke taal.

Eerst werden een aantal voorstellingsmethodes onderzocht. De huidige

werkwijze met behulp van scherpe scheidingspunten voor het voorstellen

van linguïstische hindertermen (bv. 7.2 voor “erge hinder”) faalt om een

bepaalde mate van hinder op een correcte manier uit te drukken. De me-

thodes besproken en uitgebreid in sectie 2 zijn veel beter geschikt om de

betekenis van deze hindertermen weer te geven. Met het gebruik van de
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Figuur 12: Relatieve frequentie van de verschillende combinaties van ge-

classificeerde en gerapporteerde hinder met het ergste bron model (links)

en de vaagregelgebaseerd model (rechts).

vaagverzamelingenleer kunnen ze de graduele overgangen op een realis-

tische manier uitdrukken. Om dit te illustreren werd een automatische

vertalingsapplicatie ontworpen om de termen te vertalen, louter en alleen

gebaseerd op hun voorstelling als vaagverzameling.

Vervolgens werd een conceptueel hindermodel bestudeerd. De com-

plexe relaties en interacties die geïdentificeerd werden staan in schril con-

trast met de huidige indicatormodellen die enkel de geluidsniveaus in re-

kening nemen. In tegenstelling tot deze statistisch gebaseerde methodes

(enkel geschikt voor grote regio’s), werd in sectie 3 een model ontworpen

dat de hinder op een individuale basis kan voorspellen. Hierbij kunnen alle

persoonlijke, emotionele, situationele,... variabelen meegenomen worden.

Intern gebruikt het model vaaglogica om conclusies te trekken op basis van

de beschikbare informatie. Het gebruik van vaaglogica impliceert dat het

model tolerant is voor gegevens en kennis die vaag en/of onzeker is. De

kennis is voorgesteld als vaagregels die de verbanden tussen de variabelen

op een linguïstische manier vastleggen. Hierdoor is het model gemakkelijk

interpreteerbaar, ook voor niet-akoestici en niet-wiskundigen. De uitvoer

is robuust, en geeft een indicatie van hoe betrouwbaar de gevonden con-

clusie is, in functie van de aanwezige informatie. Door het optimaliseren

van gewichten die de zekerheid van de regels aanduiden, kan men regelhy-

potheses testen.

De werking van een model voor de hinder door wegverkeer en trein-
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Figuur 13: Relatieve frequentie van de verschillende combinaties van ge-

classificeerde en gerapporteerde hinder met het vage integraal modellen

(links: 1-maxitief Choquet, rechts: 1-maxitief Sugeno).

verkeer werd in sectie 4 geïllustreerd met gegevens afkomstig van twee

verschillende enquêtes, één uit Oostenrijk en één uit Vlaanderen. Het vaag-

model kan scherpe uitvoer geven als het nodig is om de resultaten te ver-

gelijken met andere, scherpe modellen. Zo’n vergelijkingen werden door

het vaagmodel glansrijk doorstaan. Een meer aangewezen behandeling van

hinder als een vaagconcept wordt bekomen door het model in te stellen om

vage uitvoer te produceren. Hierbij kan men dan met een parameter de ma-

te aangeven waarin men een model wenst dat vaak correct is (in scherpe

termen) tegen de prijs van niet specifieke resultaten. Er werd aangetoond

dat de vage voorstellingen van hinder en de kennis toelaten om het model

te veralgemenen tot meerdere verzamelingen van gegevens afkomstig van

meerdere enquêtes in verschillende talen. De bekomen resultaten waren in

overeenstemming met de klassieke analysetechnieken. Bovendien liet het

model toe nog verdere analyses uit te voeren.

Vaak is men niet enkel geïnteresseerd in de hinder afkomstig van een

bepaalde bron, maar in de evaluatie van de globale hinder. In sectie 3 werd

het cognitief model achter het beste scherpe model, het ergste bron mo-

del, blootgelegd en vervolgens vervaagd met behulp van vaagregels. Deze

linguïstische regels zijn eenvoudig te interpreteren. Dit vaagmodel pres-

teert lichtjes beter dan het scherpe model. Er werden ook nog twee andere

accumulatiemodellen onderzocht, op basis van de Choquet en de Sugeno-

integraal. Deze bleken ook nog een beetje beter te presteren dan het vaag-
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regelgebaseerd systeem.

Om de toepasbaarheid van het vaagmodel te verhogen zou men er in

eerste instantie voor moeten kunnen zorgen dat de invoergegevens een

indicatie bevatten van hun betrouwbaarheid. Dit kan bv. door de mo-

dellen vanaf de maatschappelijke activiteiten tot en met de toestand van

het milieu eveneens te vervagen. De modellen die in dit werk uitgewerkt

werden kunnen dan de effecten van die toestand voorspellen op basis van

die vage invoer. Dit zou resulteren in een veel correctere voorspelling (in

vage termen) dan nu het geval is, waar enkel scherpe getallen als invoer

gebruikt worden (zonder een inschatting van hun zekerheid). Uiteraard

kan het model ook nog verbeterd worden door meer (en zekerder) kennis

over de relaties tussen variabelen toe te voegen (bv. relatie tussen bloed-

druk en hinder). Tot slot kan men de accumulatiemodellen nog verder

doortrekken om algemene variabelen zoals de levenskwaliteit te kunnen

voorspellen met behulp van dezelfde vage technieken.

Recent worden deze vage technieken meer en meer gebruikt, zowel voor

het modelleren van de effecten van geluid [150] [94] als in andere milieu-

domeinen [76] [83] [136] [95]. Ze vormen de noodzakelijke methode om

de nauwkeurigheid van milieupollutiemodellen te verhogen en de onder-

liggende complexe processen beter te leren begrijpen.
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Chapter1

Introduction

The beginning of wisdom is found in doubting;

by doubting we come to the question,

and by seeking we may come upon the truth.

Pierre Abelard (1079-1142)

French philosopher

1 Perception of noise annoyance

1.1 Noise exposure

“John interrupts his sentences to Mike a few seconds because of the noise

of an airplane that flies over”. “Catherine wakes up in the middle of the

night because of her neighbors arriving home”. “Jodie closes her window.

She can’t concentrate of her study due to the noises of playing children on

the street”.

Probably everyone will recognize himself in one of the above situations.

Situations in which the perception of environmental noise interferes with

the activities we are currently doing, such as communicating, listening to

the radio, watching television, resting, sleeping, reading, working, study-

ing,... The noise bothers, disturbs or annoys us. Obviously, the degree of

annoyance we experience will largely depend on the characteristics of the

noise we are exposed to, e.g. the source of the noise, the loudness,... But

this alone is not sufficient to completely explain the way we perceive noise

annoyance. A young boy who is used to go to rock concerts will probably

not feel annoyed when he hears his favorite music loud and clear coming

from the neighbors, contrary to his dad who equals rock music with awful

1



2 INTRODUCTION

noise. Walking in a forest people will generally feel more annoyed by noises

than walking through an amusement park, because they only expect noises

from animals. So, personal, emotional, situational, environmental,... fac-

tors also play an important role. Often, these contextual factors in which

noises occur together with the acoustical characteristics of the noises are

referred to as the soundscape.

Besides the effects of environmental noise already mentioned, there are

also some physiological health effects. Physiology is the study of the func-

tions of the human body. Hence, physiological effects relate to changes in

the functioning of the body, such as higher blood pressure, faster heart-

beat and stress hormones [147]. In fact, these symptoms are more a con-

sequence of the experience of annoyance instead of the exposure to noise

itself. Noise during nighttime can induce awakenings from sleep [66]. How-

ever, rest or sleep disturbances, even if we don’t wake up or remember it,

may also lead to tiredness, decreased performance and depressed mood

because of transitions from deep sleep to a lighter phase of sleep [146].

Ultimately, really high noise levels can cause loss of hearing. It remains to

be firmly proven that long term exposure to loud noise can lead to severe

health effects such as heart diseases, although there is growing evidence

that it might increase the risk for ischaemic heart diseases [6].

An experiment conducted among international experts in the field of

acoustics and noise effects revealed that noise annoyance is primarily seen

as the most important effect of noise [79]. It was also shown that the

concept “noise annoyance” is closely related to terms such as “nuisance”,

“unpleasantness” and “disturbance”. So internationally, noise annoyance

is generally considered as the main effect of noise and a good indicator to

describe the impact of environmental noise on man. More formally, noise

annoyance is a psychological concept that can be defined as a “negative

evaluation of environmental conditions, a secondary reaction produced by

disturbances of activities, such as disturbance of communication” [79].

1.2 Environmental noise pollution

During the last decades, people have aimed at a society based on the prin-

ciples of sustainable development , “a society that can meet its needs of the

present without compromising the ability of future generations to meet

their own needs” [1]. A major condition to reach this goal is the ability to

monitor and control the impact of environmental pollution. This includes

the impact of noise pollution as an environmental stressor, for which noise

annoyance has been shown to be an excellent indicator. An important ques-

tion that must be solved for this monitoring and controlling purpose is,
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“where” exactly does the environmental noise come from?

To provide an answer to this question, we will use the DPSI-R model

(Driving forces - Pressure - State - Impact - Response) as adopted by the

European Commission [3], inspired by the earlier PSR model developed by

the OECD [2]. This theoretical framework is widely used for the purpose

of integrated environmental assessment studies, see figure 1.1. It begins

with the socio-economic driving forces (D) that exert pressure on the envi-

ronment (P) by emitting particles or energy. These emissions modify the

state of the environment (S), the immission, which in turn has an impact

on ecosystems and health (I). Finally, controlling this impact requires re-

sponses (R) on all levels. These responses can come from natural systems

(e.g. self regulation) and environmental policy makers.

Driving

forces

Pressure State Impact

Response

Figure 1.1: DPSI-R model

Specifically for environmental noise, the DPSI-R model takes the follow-

ing form.

Driving forces An activity that produces a great deal of noise is undoubt-

edly traffic and transportation. This includes all possible kinds of

vehicles on roads, railways (trains, streetcars and subway), water and

air. Of course, also economic activities such as small businesses, fac-

tories, building industry and agricultural equipment produce a lot

of noise. Other sources include the things we do in our spare time,

such as visiting restaurants and bars, going to entertainment parks

and fairs,... But simply staying home can also produce noise for our

neighbors, e.g. playing loud music and noises caused by the presence

of pets and children.

Pressure The pressure that an activity puts on the environment is directly

related to the source of the noise, it is the emission of that source on

that location. Each type of source has its own typical noise, which is

characterized by frequency, tonality, duration,... One of the most im-

portant characteristics is the produced sound pressure level or sound

exposure. This is typically expressed in decibels (dB) which is a loga-

rithmical scale based on the physical sound pressure. As a reference,
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a normal conversation produces about 60 dB at normal listening dis-

tance. The hearing threshold is 0 dB, while the pain level is situated

around 120 dB.

State The state of the environment focuses on the exposure of noise at a

certain location, independent of a specific source. It is the immission

of noise, linked to a human observer at that location. Additionally,

the way we hear noise, the physiological aspects of the human ear are

also taken into account, e.g. loudness and possibly other noise char-

acteristics that can negatively influence annoyance such as tonality.

It was found that human ears are more sensitive for certain frequency

ranges than for others, we observe some frequencies louder than oth-

ers. This means that sound pressure levels in dB are not well suited

to express the loudness we are exposed to. Therefore, they are cor-

rected to correlate overall sound pressure with the frequency sen-

sitivities of the human ear. This process is called A-weighting, the

resulting quantity is the A-weighted sound exposure expressed in the

A-weighted decibel (dBA).

During a time period, we are exposed to many single noise events, e.g.

the passing of a heavy truck or an airplane that flies over. However,

for the purpose of annoyance monitoring, we are not really interested

in the sound exposure of each individual noise event. We are only

concerned with the overall sound exposure at a location. To calcu-

late such an overall measure, the A-weighted decibels are averaged

over a 24-hour day, with a 10 dBA penalty applied to noise occurring

during the nighttime period (from 10 pm until 7 am). The obtained

quantity is called the Day-Night-Level (DNL, Ldn). Similarly, also the

Day-Evening-Night-Level (DENL, Lden), has been defined with an extra

5 dBA penalty for the evening hours (from 7 pm till 11 pm) and again

a 10 dBA penalty for the night hours (from 11 pm till 7 am).

Impact The effects of noise on man have already been discussed in the

previous section. The impact of noise on ecosystems and economy is

not yet well-studied. For a review of studies on the noise effects on

animals, see [101].

Response Various decisions can be made to lower the emission, immis-

sion and impact of noise. To reduce the noise emission of traffic, one

can opt for more quiet vehicles and road surfaces. Immission can be

decreased by separating noisy areas from areas that require more si-

lence such as living areas (e.g. by prohibiting heavy traffic), by placing

noise shields and with better isolation of houses. Finally, quiet areas,
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areas with a comforting soundscape, can be marked and protected

from noisy activities. It is up to the politicians to make such deci-

sions and to write appropriate regulations. The accurate monitoring

of noise annoyance, and –if possible– also the prediction of noise an-

noyance after planned changes to the neighborhood (e.g. new roads,

railways or plants) is an important instrument for these purposes.

Modeling noise annoyance may even allow to suggest response at the

level of noise impact. For instance, it could be found that merely pay-

ing attention to complaints, listening instead of brushing them aside,

might help to soften the feeling of annoyance.

1.3 Noise annoyance

Although the physical “where” question is a significant one, it is not suffi-

cient to fully grasp the concept of noise annoyance. It is also primordial to

shed light on the “how” question: “How is noise annoyance psychologically

constructed?”. In [107] the evolution of psychological noise-health models

is described. Here, only the transactional model as introduced by Lazarus

and Folkman [104] will be explained, just to give an idea of the complex

psychological processes that are involved (see figure 1.2).

In the primary appraisal phase the personal significance of the per-

ceived noise exposure is evaluated. If the exposure is assessed as stress-

ful, it is followed by a secondary appraisal . In this phase the personal

opportunities to deal with the burden are evaluated. Finally, the result of

this evaluation is implemented in the process of coping. Coping refers to

efforts to manage the noise exposure, the actions that have emerged as nec-

essary from the secondary appraisal. There are many varieties of coping

styles. Behavioral actions include the closing of windows and even chang-

ing the bedroom to the other side of the house. Emotional or palliative

coping are actions such as seeking social support or simply feeling help-

less. Finally, cognitive approaches are efforts that change the meaning of

the situation without changing the actual environment, e.g. social compar-

isons, minimization and information gathering. After the coping phase,

this noise-health loop is endlessly repeated through re-appraisals directed

at changes in the personal experience of the noise environment.

The transactional model also acknowledges the importance of personal

and situational factors on the appraisal processes and the coping efforts

that are considered appropriate. Noise sensitivity, fear of the source, sat-

isfaction of the neighborhood and cultural differences can significantly in-

fluence the way we perceive and evaluate noise.

To conclude, from a psychological viewpoint noise annoyance describes
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a relation between an acoustic situation and a person who is forced by

noise to do things he does not want to do, who cognitively and emotionally

evaluates this situation [79].
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Figure 1.2: Transactional model

2 Modeling issues

We already know that the modeling and prediction of noise annoyance is

important to achieve sustainable development. It depends on a multitude

of factors, acoustical as well as non-acoustical, that are involved in com-

plex psychological processes that lead to its construct. Furthermore, noise

annoyance can be traced back to the human activities that pollute the envi-

ronment with noise. With this in mind, we can imagine a model that walks

down the DPSI-R model and results in an expression of the noise annoy-

ance an observer would experience at a given location. However, there are

a few issues that complicate this apparently simple idea. As they are all re-

lated to the acquisition, representation and processing of information, let

us first elaborate a bit on the different types of information that exist [131].

The simplest type of information is precise information. Information

that is given as a (crisp) number, e.g. “the sound level of the music is 100

dBA”. But in real life, we do not always know things that precise. For ex-

ample, the statement “the sound level of the music is between 90 and 110

dBA” conveys imprecise information of the sound level. We only know that

the sound level is a particular value in the given range, but we do not have

knowledge of the exact value. Vague information is imprecise information
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that cannot be described within precise boundaries, e.g. “the sound level of

the music is loud”. In this case, sharp boundaries are completely lacking.

Some sound levels are definitely “loud”, while others can only be called

“loud” to a certain degree. There is a gradual transition. Sometimes there

can be doubt about the truth of a statement, e.g. “the sound level of the

music is possibly 100 dBA”. In this case, we have uncertain information,

we are not really sure that the sound level is 100 dBA. There can be sev-

eral different causes for the uncertainty. The measurement of the noise

level could have been affected because the location was not well chosen

or because the meter was not calibrated. Imprecision and uncertainty are

orthogonal concepts, they can also occur together. As an example of this

consider the expression “the sound level of the music is possibly between

90 and 110 dBA”.

Let us now return to the difficulties associated with the application of

the DPSI-R model. When moving from the driving forces to the impact, we

have to deal with the following issues.

• The involved concepts become more subjective and vague. Where the

emitted noise levels can be measured and expressed on a physical, nu-

merical scale, this is not possible with concepts such as noise annoy-

ance and sensitivity to noise, which are fundamental in the modeling

of the impact of noise. First of all, for such concepts there is no un-

derlying physical scale. Secondly, those concepts describe a feeling,

a state of mind, which cannot be communicated by a precise number.

• Data is scarce, imprecise and uncertain. Every modeling approach

requires a lot of data to build or verify the resulting model. But col-

lecting data is a time-consuming and expensive process. Yet, gener-

alizations, interpolations and extrapolations to reduce costs are im-

portant sources of uncertainty, e.g. counting the amount of traffic

on a single day for fifteen minutes during evening rush-hour and us-

ing this as representative for the average amount of traffic in a year.

Furthermore, measured data always suffers from some imprecision

typical for the measuring equipment. Even worse, due to temporary

equipment failures, some data values may be missing. On the other

hand, there are also a number of subjective concepts that cannot be

directly measured at all. These must be obtained by other means. A

common approach to gather information on e.g. experienced noise

annoyance is through social surveys, conducted by post, phone, or

face-to-face. In such studies collaborative respondents are asked to

answer a few questions, usually by selecting one of the proposed an-

swers. It is clear that this kind of data is often incomplete (people can
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skip questions), imprecise (e.g. if the proposed answers are not well

chosen) and error-prone because of the involved human interaction.

• Knowledge is lacking, vague or uncertain. For gravity, the crisp laws

of Newton and more generally the laws of Einstein have been found.

However, this kind of precise knowledge is not –yet?– available in

all scientific fields. Although there are physical laws describing the

propagation of noise, noise propagation over large distances (already

starting at a few hundred meters) is still not fully known. Even less

is known about the variables that influence the experience of noise

annoyance, and their precise relations with annoyance. Experts in

the field can only give vague expressions of some assumed relations.

Using such qualitative statements in calculation models is not a triv-

ial task. Furthermore, it can be doubted that it is even possible to

make such knowledge as precise as the gravity laws since this would

require a complete biological characterization of human beings, in-

cluding their thoughts, experiences,...

3 Towards a solution

Considering its importance for policy makers, this work will tackle the mod-

eling of the impact of environmental noise. Starting at the end of the DPSI-R

chain, the concept of noise annoyance will be disentangled to the state of

the noise environment and other factors that influence our perception of

noise. Our objective is to propose a framework that is capable of han-

dling the mentioned vagueness and uncertainty of the concepts, data and

knowledge in a natural and useful way. More concrete, a framework with

the following properties is put forward as a goal.

Tolerant The framework should be tolerant for vague, imprecise, uncer-

tain or missing information. This includes the information that is

stored inside the model (knowledge) as well as the information that

is fed to the system (input data). The framework should try to make

a well-founded, best guess based on the available information.

Reliable The resulting expression of noise annoyance should be meaning-

ful and not more precise than feasible. If the result cannot be natu-

rally expressed as a single –precise– number, then the model should

not try to do so. The outcome of the system must be reliable within

the limits of the provided inputs. If it cannot draw a firm conclusion,

it must give a hint about the reliability of its output.
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Robust Small changes to the input values, e.g. due to measurement noise,

should not lead to big changes of the output.

Interpretable The model should expose the way it works. Instead of being

a “black box” model, it must be easily comprehensible by experts in

the field. Its underlying semantics and reasoning processes must be

clear.

Individual The modeling of noise annoyance should be done on a personal

level, not averaged over a whole neighborhood or community. It must

be possible to take into account a number of personal variables, and

produce an estimate of the experienced noise annoyance on an indi-

vidual basis.

Adaptable The framework must be able to adapt rules when they repre-

sent hypothetical knowledge that does not hold. It should allow to

use available input and compare the output with the results obtained

through a social survey. This feature will provide an instrument to

determine “what” variables are important for the construct of noise

annoyance, and how they influence annoyance.

To accomplish these ambitious goals, it is clear that the handling of

vague and uncertain information will require special care. Although these

kinds of information occur quite often in real life, they are difficult to work

with in a mathematical world based on binary logic. The main cause of the

difficulties is the lack of a mathematical notion of gradation. In a binary

setting something is either completely true or completely false. Smooth

transitions are not possible. It is obvious that other tools will be needed in

order to succeed in our goals.

In 1965, Zadeh introduced the concept of a fuzzy set [183]. His aim was

to represent in a sound mathematical way gradual membership to classes

of objects that do not have crisp boundaries. He already noted that such im-

precisely defined classes are often encountered in the real physical world,

e.g. the class of beautiful women. Since then the theory of fuzzy sets and

the related fuzzy logic [191] and possibility theories [191] [54] have been

further expanded and have proven to be appropriate tools to model vague

and uncertain information and knowledge. In this work, we will show that

fuzzy set theory is perfectly suited to address the problems of noise an-

noyance modeling and to achieve the goals put forward.

Fuzzy logic fits into the ideas of what is called “soft computing”. The aim

of soft computing is “to exploit the tolerance for imprecision, uncertainty,

approximate reasoning, and partial truth in order to achieve tractability,
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robustness, low cost solutions, and close resemblance to human like deci-

sion making”. Contrary to traditional “hard computing” which is focused

on binary logic and crisp numerical analysis. Other methodologies that

enable “soft computing” are neural networks, evolutionary computing and

probabilistic reasoning. They are all imitating the way that humans reason

in a vague and uncertain world.

An important aspect of fuzzy sets in the context of soft computing is

that they enable what Zadeh calls “computing with words” [193] [194] [195].

Computing with words is a methodology in which the objects of computa-

tion are words and propositions drawn from a natural language. It allows

to reason with linguistical expressions represented by fuzzy sets. Com-

puting with words is inspired by the human capabilities to operate based

on perceptions instead of crisp numbers and measurements. For example,

when driving a car, we do not measure the distance to the car in front of

us. We do not slam on the brakes at exact three meters distance, instead,

we slowly start braking when we are gradually approaching the other car.

Such models where perceptions are linguistically expressed are much more

interpretable by humans.

Computing with words as a foundation for a computational theory of

perceptions, and the other soft computing methodologies that imitate hu-

man like intelligence has given rise to the new paradigm of computational

intelligence (CI). It is based on the manipulation of perceptions instead of

the manipulation of numbers and symbols as in the field of artificial intelli-

gence (AI). Computational intelligence is very promising in scientific areas

in which perceptions play a key role in an imprecise and uncertain environ-

ment, e.g. medical diagnosis [86] [127] and financial analysis [128] [182]. In

this work, the perception-based approach will be investigated in the con-

text of the modeling of noise annoyance.

In chapter 2 the necessary mathematical concepts are introduced. Chap-

ter 3 uses those tools to represent the concept of (noise) annoyance. These

representations are utilized in chapter 4 to build a framework for the mod-

eling of noise annoyance caused by a specific type of source. How the

framework can be applied for the modeling of the accumulation of annoy-

ance caused by several types of sources is shown in chapter 5. Obtained

results based on real data sets are discussed in chapter 6. Finally, chapter 7

draws some conclusions and suggests directions for further research.



Chapter2

Basic concepts of

fuzzy sets and fuzzy logic

If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is.

John von Neumann (1903-57)

Hungarian-American mathematician

1 A Greek tale

A single grain of sand is certainly not a heap. Nor is the addition of a single

grain of sand enough to transform a non-heap into a heap. When we have

a collection of grains of sand that is not a heap, then adding but one single

grain will not create a heap. And so by adding successive grains, moving

from 1 to 2 to 3 and so on, we will never arrive at a heap. And yet we know

full well that a collection of 1,000,000 grains of sand is a heap, even if not

an enormous one.

This “sorites paradox” [155] is attributed to Eubulides of Miletus, a

Greek philosopher who lived in the 4th century BC. He was a contempo-

rary and rival of the great Aristotle (384 BC–322 BC). The name “sorites”

derives from the Greek word “soros” (meaning “heap”) and originally re-

ferred, not to a paradox, but rather to a puzzle known as “The Heap”.

Would you describe a single grain of wheat as a heap? No. Would

you describe two grains of wheat as a heap? No. And three

grains? Four? And so on... – You must admit the presence of a

heap sooner or later, so where do you draw the line?

11
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The sorites line of reasoning was also known as little-by-little argument

which alludes to the gradual process of change that takes place. The

smooth transition from a proposition to its opposite proposition. But Aris-

totle had just created the foundations of binary logic as the universal laws

of thought. In this Aristotelian logic, such transitions were impossible be-

cause of the law of the excluded middle which states that every proposition

must either be true or false.

Although this paradox in binary logic was noted very early in history, it

took a long time before an attempted solution was formalized. In 1920 the

Polish logician and philosopher Jan Łukasiewicz (1878–1956) introduced

the notion of a multi-valued logic by proposing a third additional truth

value. This third value was “possibly true or false” and belonged some-

where between true and false. Later on, he also explored a four-valued and

five-valued logic. But it was Lotfi Zadeh (1921–) who developed the math-

ematical framework to reason with vagueness and gradedness of concepts

in 1965. In his fuzzy set theory and associated fuzzy logic, which is in

fact an infinite valued logic, a proposition can take any truth value in the

interval [0,1]. Truth and belonging to a set become a matter of degree.

This allows to resolve the sorites paradox in a mathematically sound way

with a gradual transition of the degree of belonging to a heap (from 0 to

1), without crossing any sharp boundaries.

In this chapter, the basic notions of fuzzy set theory and fuzzy logic

are briefly introduced. They will be needed in the remainder of this work

to handle the vagueness and uncertainty in the annoyance concept. For a

more thorough discussion of fuzzy sets and fuzzy logic, please refer to [97]

and [58].

Figure 2.1: The founding fathers of logic: Aristotle, Łukasiewicz and Zadeh.
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2 Basic definitions

2.1 Fuzzy sets and fuzzy logic

In classical set theory, or within the field of fuzzy set theory also called

“crisp” set theory, a characteristic function is associated with each crisp

set. This function is defined on the universe of discourse and yields the

value 0 or 1 whether the argument belongs to the set or not.

Definition 1 (Set ). A (crisp) set A on a universe U is characterized by its

characteristic function χA : U → {0,1}

χA(u) =











0 if u ∉ A

1 if u ∈ A
(2.1)

The powerset of U , the set of all subsets of U , will be denoted as P(U).
Fuzzy set theory generalizes the concept of set membership by extend-

ing the range of the characteristic function from {0,1} to the unit interval

[0,1]. This extension allows a gradual transition from “not belonging to a

set” to “belonging to a set”.

Definition 2 (Fuzzy set [183]). A fuzzy set A on a universe U is character-

ized by its membership function µA : U → [0,1], where µA(u) denotes the

degree to which u ∈ U belongs to A. µA(u) is called the membership degree

or grade of membership of u in A.

The set of all fuzzy sets on a universe U is denoted as F(U). Every

crisp set is in fact a fuzzy set restricted to {0,1}. Therefore the following

relation holds: P(U) ⊆ F(U).
In [183] Zadeh also introduced extensions of the classical operations on

sets.

Definition 3 (Fuzzy set union, intersection and complement [183]). For A

and B fuzzy sets over a universe U and for all u ∈ U ,

µA∪B(u) = max(µA(u), µB(u)) (2.2)

µA∩B(u) = min(µA(u), µB(u)) (2.3)

µA(u) = 1− µA(u) (2.4)

A natural requirement of fuzzy operators is that they coincide with their

crisp counterparts when they operate on crisp sets. It can be verified that

the above definitions satisfy this property.

As fuzzy set theory is an extension of classical set theory, it is also

possible to extend binary logic along the same lines to fuzzy logic . Instead
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of evaluating a logical proposition as either true (1) or false (0), the truth

function is extended to range in the unit interval [0,1]. Hence, truth also

becomes a matter of degree. Based on the strong analogy between set

theory and logic, the operations defined for sets, like union, intersection

and complement, have a corresponding logical meaning, like disjunction

(OR, A∨B), conjunction (AND, A∧B) and negation (NOT, ¬A) respectively.

2.2 Properties of fuzzy sets

Definition 4 (Alpha-cut , strong alpha-cut [97]). For A a fuzzy set on the

universe U and α ∈ [0,1], the alpha-cut Aα and strong alpha-cut Aα are

defined by

Aα = {u|µA(u) ≥ α} (2.5)

Aα = {u|µA(u) > α} (2.6)

Definition 5 (Support , core [97]). For A a fuzzy set on the universe U , the

support supp(A) and core ker(A) are defined by

supp(A) = {u|µA(u) > 0} = A0 (2.7)

ker(A) = {u|µA(u) = 1} = A1 (2.8)

Definition 6 (Height , plinth [97]). Given a set U and a fuzzy set A on U ,

the height and plinth of A are defined by

hgt(A) = sup
u∈U

µA(u) (2.9)

plt(A) = inf
u∈U

µA(u) (2.10)

Definition 7 (Normal fuzzy set [132]). A fuzzy set A on U is normal if it

satisfies hgt(A) = 1.

When a fuzzy set A on U is not normal, it can be normalized with the

following transformation.

Definition 8 (Fuzzy set normalization [132]).

norm(A) =











µA(x)
hgt(A) if hgt(A) ≠ 0

1 if hgt(A) = 0
(2.11)

Definition 9 (Scalar cardinality [132]). The cardinality of a fuzzy set A on

a finite universe U is defined by

|A| =
∑

u∈U
µA(u) (2.12)
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For a fuzzy set A on the real line R, it is defined by

|A| =
∫

U
µA(u)du (2.13)

Definition 10 (Fuzzy subset [183]). A fuzzy set A ∈ F(U) is a subset of a

fuzzy set B ∈ F(U) if the following condition is satisfied.

A ⊆ Ba (∀u ∈ U)(µA(u) ≤ µB(u)) (2.14)

Definition 11 (Fuzzy equality [183]). A fuzzy set A ∈ F(U) is equal to a

fuzzy set B ∈ F(U) if the following condition is satisfied.

A = Ba (∀u ∈ U)(µA(u) = µB(u)) (2.15)

2.3 Fuzzy set representations

A fuzzy set A on a universe U is completely defined by its membership

function. When U is a countable set, the fuzzy set A can be specified by

a list of ordered (membership degree, set element) pairs. If U is a non-

countable domain, the membership function of A is usually given by a

functional representation. In the literature, a number of parametric shapes

can be found [132]. They can be used to define fuzzy sets in the special

case that the universe U is the real line R. In the following it is always

assumed that α, β, γ and δ are parameters in R and α < β < γ < δ.

Definition 12 (Linear membership function).

Lin(.;α,β) : R→ [0,1]

u,























0 if u ≤ α
u−α
β−α if u ∈ [α,β]
1 if u ≥ β

(2.16)

Definition 13 (Triangular membership function).

Tri(.;α,β, γ) : R→ [0,1]

u,







































0 if u ≤ α
u−α
β−α if u ∈ [α,β]
γ−u
γ−β if u ∈ [β, γ]
0 if u ≥ γ

(2.17)
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Definition 14 (Trapezoidal membership function).

Trap(.;α,β, γ, δ) : R→ [0,1]

u,



















































0 if u ≤ α
u−α
β−α if u ∈ [α,β]
1 if u ∈ [β, γ]
δ−u
δ−γ if u ∈ [γ, δ]
0 if u ≥ δ

(2.18)

A trapezoidal membership function with β = γ reduces to a triangular

membership function.

Definition 15 (Sigmoidal membership function).

S(.;α,β) : R→ [0,1]

u,







































0 if u ≤ α
2
(

u−α
β−α

)2
if u ∈

[

α,
α+β

2

]

1− 2
(

u−β
β−α

)2
if u ∈

[

α+β
2 , β

]

1 if u ≥ β

(2.19)

This shape is almost everywhere identical to the exponential curve with

µ,σ ∈ R that is defined by

SE(.;µ,σ) : R→ [0,1]

u, 1
1+exp(µ−σx)

(2.20)

Definition 16 (Asymmetric Gaussian membership function).

Agauss(.;α,β, γ) : R→ [0,1]

u,















































































0 if u ≤ α
2
(

u−α
β−α

)2
if u ∈

[

α,
α+β

2

]

1− 2
(

u−β
β−α

)2
if u ∈

[

α+β
2 , β

]

1 if u = β
1− 2

(

u−β
γ−β

)2
if u ∈

[

β,
β+γ

2

]

2
(

u−γ
γ−β

)2
if u ∈

[

β+γ
2 , γ

]

0 if u ≥ γ

(2.21)
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This membership function is almost everywhere identical to a continu-

ous asymmetric Gaussian curve with µ,σ , δ ∈ R defined by

AgaussE(.;µ,σ , δ) : R→ [0,1]

u,











exp
(−(x−µ)2

2σ2

)

if u ≤ µ
exp

(−(x−µ)2
2δ2

)

if u > µ

(2.22)

The linear membership function Lin(.;α,β) and the membership func-

tion S(.;α,β) are increasing functions. The corresponding decreasing func-

tions can be obtained by using the complement operation. They will be

denoted Lin(.;α,β) and S(.;α,β) and are defined as 1 − Lin(.;α,β) and

1− S(.;α,β) respectively.

3 Triangular norms and conorms

3.1 Definitions

It has already been stressed that fuzzy set and fuzzy logic operators should

coincide with their binary counterparts when applied to crisp sets. The

fuzzy operators defined by Zadeh [183] are obviously not the only pos-

sible extensions of classical set union and intersection that satisfy this

requirement. The concept of triangular norms was originally proposed by

Schweizer and Sklar [142] to model triangular inequalities in the context

of probabilistic metric spaces. In the development of fuzzy logic, it turned

out that triangular norms and conorms can be used as general models for

the intersection (conjunction) and union (disjunction) operations.

Definition 17 (Triangular norm [142]). A triangular norm T (or t-norm

for short) is a [0,1]2 → [0,1] mapping satisfying

(i) Boundary condition: (∀x ∈ [0,1])(T (1, x) = x)

(ii) Monotonicity:

(∀(x1, x2, y1, y2) ∈ [0,1]4)
(x1 ≤ x2 ∧y1 ≤ y2 ⇒ T (x1, y1) ≤ T (x2, y2))

(iii) Associativity: (∀(x,y, z) ∈ [0,1]3)(T (T (x,y), z) = T (x,T (y, z)))

(iv) Commutativity: (∀(x,y) ∈ [0,1]2)(T (x,y) = T (y,x))
Definition 18 (Triangular conorm [142]). A triangular conorm S (or t-

conorm for short) is a [0,1]2 → [0,1] mapping satisfying



18 BASIC CONCEPTS OF FUZZY SETS AND FUZZY LOGIC

(i) Boundary condition: (∀x ∈ [0,1])(S(0, x) = x)
(ii) Monotonicity:

(∀(x1, x2, y1, y2) ∈ [0,1]4)
(x1 ≤ x2 ∧y1 ≤ y2 ⇒ S(x1, y1) ≤ S(x2, y2))

(iii) Associativity: (∀(x,y, z) ∈ [0,1]3)(S(S(x,y), z) = S(x,S(y, z)))
(iv) Commutativity: (∀(x,y) ∈ [0,1]2)(S(x,y) = S(y,x))

Any triangular norm can be applied to model (fuzzy) set intersection

and logical conjunction, while any triangular conorm models (fuzzy) set

union and logical disjunction. Triangular norms and triangular conorms

are in fact dual operators. To express their duality, we must first introduce

negators.

Definition 19 (Negator [172]). A negator N is a [0,1] → [0,1] mapping

satisfying

(i) Boundary condition: N (0) = 1∧N (1) = 0

(ii) Monotonicity: (∀(x,y) ∈ [0,1]2)(x ≤ y ⇒N (y) ≤N (x))

Definition 20 (Strong negator [58]). A negator N additionally satisfying

involution, (∀x ∈ [0,1])(N (N (x)) = x), is called a strong negator.

All negators are ideally suited to model the fuzzy complement (logi-

cal negation) operation. They are monotonically decreasing functions that

coincide with their crisp counterpart when applied to {0,1}. Examples

of negator functions are summarized in table 2.1. The negator N⊥ is the

smallest possible negator, whileN> is the largest possible negator. Despite

the many possibilities to define a negator, in practice, the Zadeh –standard–

negator NZ is the one that is almost exclusively used.

Definition 21 (Triangular norm and conorm duality [58]). A triangular

normT and a triangular conorm S are dual with respect to a strong negator

N when they satisfy,

(∀(x,y) ∈ [0,1]2)(S(x,y) =N (T (N (x),N (y)))) (2.23)

which is equivalent with

(∀(x,y) ∈ [0,1]2)(T (x,y) =N (S(N (x),N (y)))) (2.24)

Examples of triangular norms and their dual conorms (with respect to

the standard negator NZ ) frequently encountered in the fuzzy literature

are shown in table 2.2. For more examples and a thorough discussion

of t-norms and t-conorms, the interested reader is referred to [58] [97]

and [132].
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Table 2.1: Negators.

Name Negator Parameter

Zadeh [183] NZ(x) = 1− x -

Intuitionistic [58] N⊥(x) =











1 (x = 0)

0 (x ≠ 0)
-

Dual intuitionistic [58] N>(x) =











0 (x = 1)

1 (x ≠ 1)
-

Threshold [40] NT ,α(x) =






1 (x < α)

0 (x ≥ α)
α ∈ [0,1]

Sugeno [149] NS,α(x) = 1−x
1+αx α ∈]− 1,+∞[

Yager [175] NY ,α(x) = α
√

1− xα α ∈]0,+∞[

3.2 Properties

Definition 22 (Idempotent [97]). A triangular norm T is idempotent if it

satisfies (∀x ∈ [0,1])(T (x,x) = x). A triangular conorm S is idempotent

if it satisfies (∀x ∈ [0,1])(S(x,x) = x).

TM and SM are the only idempotent triangular norm and conorm.

In [143] the following theorem has been proven.

Theorem 1. For every triangular norm T and triangular conorm S it holds:

TZ ≤ T ≤ TM (2.25)

SM ≤ S ≤ SZ (2.26)

where the order relation ≤ for two binary [0,1]2 → [0,1]mappings is point-

wise defined as

f1 ≤ f2 a (∀(x,y) ∈ [0,1]2)(f1(x,y) ≤ f2(x,y)) (2.27)

In fact, for the given triangular norms and conorms the following or-

dering can be proven [143]: TZ ≤ TW ≤ TP ≤ TM ≤ SM ≤ SP ≤ SW ≤ SZ .

Because of the associativity property of triangular norms and conorms,

they can be extended to n-ary operators.

Definition 23 (n-ary t-norm and n-ary t-conorm [43]). Let (xi)
n
i=1 be a

finite family in [0,1] with n ∈ N \ {0}, T is a triangular norm and S is a
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Table 2.2: Triangular norms and their dual conorms.

Triangular norm Triangular conorm

Weber = Drastic [172]

TZ(x,y) =























y (x = 1)

x (y = 1)

0 (else)

SZ(x,y) =























y (x = 0)

x (y = 0)

1 (else)

Łukasiewicz [58]

Bold intersection Bounded sum

TW (x,y) = max(0, x +y − 1) SW (x,y) = min(x +y,1)
Bandler and Kohout [58]

Product Probabilistic sum

TP(x,y) = xy SP(x,y) = x +y − xy
Zadeh [183]

Minimum Maximum

TM(x,y) = min(x,y) SM(x,y) = max(x,y)

triangular conorm, then

Tn(x1, x2, . . . , xn) = T (Tn−1(x1, x2, . . . , xn−1), xn) (2.28)

Sn(x1, x2, . . . , xn) = S (Sn−1(x1, x2, . . . , xn−1), xn) (2.29)

where T2 = T , S2 = S and T1, S1 are the identity operation on [0,1]. The

index n can be dropped as there can be no misinterpretation.

4 Fuzzy relations

So far, only fuzzy sets on a single universe have been defined. Just as

classical set theory can define relations between two or more universes,

fuzzy sets can be extended to multidimensional fuzzy sets that relate the

elements of several universes. Multidimensional fuzzy sets are usually

called fuzzy relations.

Definition 24 (Fuzzy relation [183]). An n-ary fuzzy relationR (n ∈ N\{0})
between the universes U1, U2, . . . , Un is a fuzzy set on the universe U1×U2×
. . . × Un. For such fuzzy sets, the membership function µR is a mapping

U1 × U2 × . . . × Un → [0,1] which assigns a membership degree to all n-

tuples (u1, u2, . . . , un) where ui ∈ Ui for all i ∈ {1,2, . . . , n}.
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The basic notions regarding fuzzy relations are defined below. Al-

though their definition is always given for the case of fuzzy relations on

two universes U and V , it is straightforward that they can be generalized

to fuzzy relations on the universes U1, U2, . . . , Un with n ∈ N \ {0}.
Definition 25 (Cartesian product [183]). The Cartesian product A × B
where A ∈ F(U) and B ∈ F(V) is the fuzzy set µA×B in U × V defined

by

(∀(u,v) ∈ U × V)(µA×B(u,v) = T (µA(u), µB(v)) (2.30)

where T is a triangular norm.

Definition 26 (Projection [187]). For A a fuzzy relation on U and V , A ∈
F(U × V), the projection of A onto U is the mapping ProjU : F(U × V) →
F(U) defined as

(∀u ∈ U)(µProjU (A)(u) = sup
v∈V

µA(u,v)) (2.31)

Definition 27 (Cylindrical extension [187]). For two universes U and V , let

A be a fuzzy set on U , A ∈ F(U). The cylindrical extension of A onto U ×V
is the mapping CextU : F(U)→ F(U × V) defined as

(∀(u,v) ∈ U × V)(µCextU (A)(u,v) = µA(u)) (2.32)

The projection operation reduces the number of dimensions on which a

fuzzy set is defined, while the cylindrical extension extends the Cartesian

product space. These concepts can be used to define the important notion

of composition of fuzzy relations.

Definition 28 (Composition [186]). Consider the fuzzy relations R ∈ F(U×
V) and S ∈ F(V ×W). The composition R ◦T S is given by

R ◦T S = ProjU×W (CextU×V×W (R)∩T CextU×V×W (S)) (2.33)

where T is the triangular norm to model the intersection operation.

Based on this definition, the fuzzy composition R ◦T S should be calcu-

lated as the mapping F(U ×W)→ [0,1],

(∀(u,w) ∈ U ×W)(µR◦T S(u,w) = sup
v∈V

T (R(u,v), S(v,w))) (2.34)

Zadeh proposed to use the sup-min composition, R ◦min S which is usually

simply denoted as R ◦ S.

In literature, a large number of types of fuzzy relations can be found.

Formally, an extension of a crisp equivalence relation is called a similarity

relation and defined as follows.
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Definition 29 (Similarity relation [184]). A binary relation R on U × U is

called a similarity relation when it satisfies,

(i) Reflexivity: (∀u ∈ U)(R(u,u) = 1)

(ii) Symmetry: (∀(u1, u2) ∈ U2)(R(u1, u2) = R(u2, u1))

(iii) Transitivity:

(∀(u1, u2, u3) ∈ U3)(min(R(u1, u2), R(u2, u3)) ≤ R(u1, u3))

A similarity measure on a universeU is defined as a [0,1]-valued, binary

fuzzy relation on F(U), that is useful for the comparison of fuzzy sets. In

this work, a similarity measure will not necessarily satisfy the definition

of a similarity relation, although this is often assumed in literature. How-

ever, all the similarity measures used in this work will at least satisfy the

reflexivity and symmetry properties (when the fuzzy sets are normalized).

5 Semantics

Although the membership degree µA(u) of an element u ∈ U is mathemat-

ically defined as the degree to which the element u belongs to the fuzzy set

A, in practical applications the membership degrees can be interpreted in

several different ways. In [57], Dubois and Prade have distinguished three

semantics for the membership degree.

Similarity This is historically the oldest interpretation of membership de-

grees as introduced by Zadeh in 1965 [183]. In this view the member-

ship degree µA(u) expresses the degree of similarity (or proximity)

of the element u to prototypical elements of A, elements that fully

belong to A. This interpretation is primarily at use in classification

and data analysis applications (e.g. clustering), in the process of ab-

stracting a representation from data by exploiting proximity between

pieces of information. It is used in applications that are oriented to-

wards clarifying information.

Example: When it is known that a car is four meters, you can ask the

question whether it is a “big” car.

Note that this interpretation is used to model vagueness inherent

in concepts, gradual transitions from a concept to its opposite (e.g.

sorites). This vagueness should not be confused with probability.

Example: When a bottle contains an unknown liquid, consider the

difference between saying that the liquid is poisonous to the (fuzzy)
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degree 0.5 and saying that the probability that the liquid is poison is

0.5. In the former, the liquid will not be lethal but it is not healthy

either while the latter expresses that it is completely healthy or fully

deadly both with a 0.5 chance. This example stresses the fact that

probability models in fact binary propositions, contrary to the fuzzy

approach. If someone tells us that he filled the bottle with potable

water, the uncertainty of the probability vanishes. This cannot be said

from the fuzzy expression, additional information will not resolve the

vagueness, it is intrinsic to the concept.

Uncertainty In 1978 Zadeh proposed fuzzy set theory as a basis for a

theory of possibility [191]. If it is known that “X is A” where X is a

variable on U , µA(u) is the degree of possibility that X has the value

u. This view is at work in expert systems, automated reasoning and

flexible querying of databases, applications that are oriented towards

retrieving information.

Example: When it is known that someone has seen a “big” car, you

can ask the question whether it was four meters.

In this context, the term “possibility” can have an epistemological

meaning (“plausibility”) or a physical meaning (“feasibility”).

Example: At breakfast Hans has the habit of eating eggs. The uncer-

tainty regarding the number of eggs that Hans will eat is possibilistic

in the physical sense of eating at most x eggs in the morning.

More information about possibility theory and its relationship with

probability theory is given in section 6.

Preference In this view, put forward by Bellman and Zadeh in 1970 [9], A

represents a set of preferred objects of a variable X and µA(u) ex-

presses the preference in favor of element u as a value for X. Typical

applications are optimization and decision making problems, appli-

cations oriented towards exploiting information.

Example: When someone wants to buy a “big” car, the question is

whether a car of four meters satisfies this preference.

Note that the definition of a membership function is always context

dependent and subjective. E.g. to define a membership function for the

concept “big”, it is important to know if the context is the modeling of mice,

dogs, humans, buildings,... Obviously, the definition will also be subject

dependent. A “big” person will have a different meaning for a little child

and for a basketball player. However, this subjectivity should not be seen

as a problem. On the contrary, it is an advantage that provides a lot of
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flexibility. It should also not be confused with subjective probabilities. The

theory of subjective probability still operates on binary propositions, while

a subjective membership function allows to model gradual transitions.

6 Possibility theory

It has already been stated that fuzzy sets can be interpreted as representing

degrees of uncertainty, the possibility that a variable takes a specific value.

This idea was introduced by Zadeh [191] and has been actively studied by

Dubois and Prade [54]. In this section, the basic notions of possibility theory

needed for the rest of this work will be explained.

6.1 Possibility measures

Just as Kolmogorov has placed probability theory on a firm axiomatic basis

by means of a probability measure, possibility theory can be put on an

analogous basis. Let us start with a definition of the required mathematical

tools.

Definition 30 (Fuzzy measure [148]). A fuzzy measure on a universe U is

a set function µ : P(U)→ [0,1] satisfying

(i) Boundary condition: µ(∅) = 0

(ii) Normalization: µ(U) = 1

(iii) Monotonicity: (∀A,B ∈ P(U))(A ⊆ B ⇒ µ(A) ≤ µ(B))

(iv) Continuity from below:

(∀A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ . . . ∈ F(U))


 lim
n→∞µ(An) = µ(

∞
⋃

n=1

An)





(v) Continuity from above:

(∀A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . ∈ F(U))


 lim
n→∞µ(An) = µ(

∞
⋂

n=1

An)





The continuity requirements are only important for infinite sequences

of sets and can be ignored for any finite family.
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Definition 31 (Possibility measure [191]). A possibility measure on a uni-

verse U is a fuzzy measure Π : P(U) → [0,1] satisfying for any family

(Ai)i∈I of elements of P(U) with I an index set,

Π





⋃

i∈I
Ai



 = sup
i∈I

Π(Ai) (2.35)

Definition 32 (Necessity measure or certainty measure [53]). A necessity

measure on a universe U is a fuzzy measure N : P(U) → [0,1] satisfying

for any family (Ai)i∈I of elements of P(U) with I an index set,

N





⋂

i∈I
Ai



 = inf
i∈I
N(Ai) (2.36)

In possibility theory, a possibility measure always refers to some vari-

able X on a universe U , e.g. the age of a man, the size of a building,... The

possibility measure ΠX(A) then expresses the possibility that the exact

value of X belongs to the set A ∈ P(U). Analogous, NX(A) expresses the

certainty or necessity that the exact value of X belongs to the setA ∈ P(U).
It is important to observe that a possibility measure is defined by means

of the maximum whereas a probability measure is additively defined. For

two finite subsets A and B of U , Π(A
⋃

B) = max(Π(A),Π(B)) while the

probability measure P on U is defined as P(A
⋃

B) ≤ P(A)+ P(B) with the

equality when A and B are disjoint.

There is an interesting relationship between possibility and necessity.

The less it is possible that the value of X lies in A, the more certain it is

that it lies in A. This duality can be stated as the following equation [132].

N(A) = 1−Π(A) (2.37)

6.2 Possibility distributions

Every possibility measure can be characterized by a possibility distribution.

A possibility distribution [191] is a mapping π : U → [0,1] where

π(u) = Π({u}) (2.38)

From (2.38) it follows that for U an infinite universe and A ∈ P(U),

Π(A) = sup
u∈A

π(u) (2.39)

When U is a finite universe, this can be written as,

Π(A) = max
u∈A

π(u) (2.40)
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A possibility distribution πX attached to a variable X on U represents

a flexible restriction on the values of X. The number πX(u) ∈ [0,1] with

u ∈ U expresses the degree of possibility of the assignment X = u where

some values of u are more possible than others. If U is the complete range

forX, at least one of the elements ofU should be fully possible as a value of

X. Hence, (∃u ∈ U)(πX(u) = 1) which is the normalization requirement.

In [191] Zadeh introduced the possibility assignment equation

(∀u ∈ U)(πX(u) = µA(u)) (2.41)

where X is a variable over U , πX is the possibility distribution of X and A

is a fuzzy set defined on U . The following example illustrates the practical

implications of this equation. Consider the variable “age of a person” (X)

on the universe [0,120] (U ). On this universe, a fuzzy set “young” (A) can

be defined that expresses the similarity between the age of a person and a

young person (interpretation of a fuzzy set as degrees of similarity). The

possibility assignment equation states that if we know that a person “Sarah

is young” (“Age(Sarah) is young” or “X = A”), the degree of possibility that

her age is u can be evaluated as the membership degree of u in the fuzzy

set “young”.

Note that there is a fundamental difference between degrees of possi-

bility and degrees of probability. This important point will be exemplified

with a classical example taken from [191]. Consider the statement “Hans

ate X eggs for breakfast”, with X taking values in U = {1,2,3, . . .}. We

may associate a possibility distribution with X by interpreting πX(u) as

the degree of ease with which Hans can eat u eggs (physical “feasibility”

interpretation of possibility). We may also associate a probability distribu-

tion with X by interpreting pX(u) as the probability of Hans eating u eggs

for breakfast (see figure 2.2). Although the possibility that Hans eats three

eggs is 1, the probability that he may do so can be quite low, e.g. 0.1. Thus,

a high degree of possibility does not imply a high probability, nor does a

low degree of probability imply a low degree of possibility. However, if an

event is impossible, it is bound to be improbable, or stated more general,

(∀A ∈ P(U))(P(A) ≤ Π(A)) (2.42)

where P is a probability measure andΠ is a possibility measure on the same

variable. This equation is known as the possibility/probability consistency

principle [191].
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Figure 2.2: Hans eats eggs for breakfast (full line: possibility distribution,

dashed line: probability distribution)

6.3 Interpretations of possibility distributions

In [55] Dubois and Prade have distinguished two interpretations of a pos-

sibility distribution, which result in two derived versions of the possibility

assignment equation of Zadeh (2.41). They state that a proposition “X = A”

(e.g. “Sarah is young”) can be interpreted as degrees of possibility and de-

grees of certainty .

“X = A is possible” This interpretation is modeled with the inequality,

(∀u ∈ U)(µA(u) ≤ πX(u)) (2.43)

The fuzzy set A is a lower bound for the possibility distribution. This

means that the proposition gives less information for values that be-

long to a lesser degree to the fuzzy set. In the extreme cases where

µA(u) = 0 the possibility of X = u is unspecified. This interpreta-

tion is useful when the possibility of values for X can be guaranteed.

When more information becomes available, the guaranteed possibility

of values will increase, the lower bound will be made more tight.

The combination of information on two variables X and Y that are

both interpreted as “possible” is dictated by the “principle of maxi-

mum specificity”.

Definition 33 (Principle of maximum specificity [55]). For X and Y

two variables over the universes U and V respectively, let πX and πY
denote their possibility distributions. Consider the propositions “X = A
is possible” and “Y = B is possible” where A ∈ F(U) and B ∈ F(V).
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The principle of maximum specificity states that their joint distribution

πX,Y must be chosen as

(∀(u,v) ∈ U × V)(πX,Y (u,v) = max(πX(u),πY (v))) (2.44)

In fact, this principle should be seen as a lower bound. The equality

only applies if the variables X and Y are non-interactive, when there

are no relational links between them. In the other case, the possibility

distribution will be less informative than the actual joint distribution.

However, using all the available information, it is the best that can be

done.

“X = A is certain” In this view, the fuzzy set provides an upper bound for

the possibility distribution,

(∀u ∈ U)(πX(u) ≤ µA(u)) (2.45)

Hence, the values in the universe become less possible as they belong

to a lesser degree to the fuzzy set. The proposition provides less

information for values that have a high membership degree in the

fuzzy set. When µA(u) = 1 the possibility of X = u is unspecified.

If more information becomes available, the certainty of values will

decrease (making them more impossible), the upper bound will be

made more tight.

The combination of information on two variables X and Y that are

both interpreted as “certain” is dictated by the “principle of minimum

specificity”.

Definition 34 (Principle of minimum specificity [177]). For X and Y

two variables over the universes U and V respectively, let πX and πY
denote their possibility distributions. Consider the propositions “X = A
is certain” and “Y = B is certain” where A ∈ F(U) and B ∈ F(V).
The principle of minimum specificity states that their joint distribution

πX,Y must be chosen as

(∀(u,v) ∈ U × V)(πX,Y (u,v) = min(πX(u),πY (v))) (2.46)

The reasoning behind this principle is analogous to that of the prin-

ciple of maximum specificity.

The possibility assignment equation (2.41) can thus be interpreted as a

special case, representing the statement “X = A is possible and certain”. It

restricts the lower as well as the upper bound of the possibility distribution

πX(u).
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7 Aggregation operators

7.1 Definitions

A collection of fuzzy sets on the universe U can be combined into a single

fuzzy set on U through an aggregation operation.

Definition 35 (Aggregator [132]). An aggregation operator or aggregator

is an n-ary operator h : [0,1]n → [0,1] with n ∈ N \ {0} satisfying,

(i) Boundaries: h(0,0, . . . ,0) = 0∧ h(1,1, . . . ,1) = 1

(ii) Monotonicity:

(∀(x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ [0,1]n)
((∀i ∈ {1,2, . . . , n})(xi ≤ yi)⇒ h(x1, x2, . . . , xn) ≤ h(y1, y2, . . . , yn))

From this definition, it is clear that n-ary triangular norms and conorms

are also aggregation operators.

As examples consider the generalized mean (averaging), Weighted Arith-

metic Mean (WAM), Ordered Weighted Averaging (OWA) and Ordered Weight-

ed Maximum (OWMax) operators.

Definition 36 (Generalized mean [132]). A generalized mean operator is

an aggregation operator defined by

Meanα(x1, x2, . . . , xn) = α

√

√

√

√

1

n

n
∑

i=1

xαi (2.47)

with α ∈ R \ {0} and xi ≠ 0 for all i ∈ {1,2, . . . , n} when α < 0.

Definition 37 (Weighted Arithmetic Mean). A WAM operator is an aggre-

gation operator defined by

WAMw(x1, x2, . . . , xn) =
n
∑

i=1

wixi (2.48)

wherew = (w1,w2, . . . ,wn) ∈ [0,1]n is a weight vector such that
∑n
i=1wi =

1.

Definition 38 (Ordered Weighted Averaging [178]). An OWA operator is

an aggregation operator defined by

OWAw(x1, x2, . . . , xn) =
n
∑

i=1

wix(i) (2.49)

wherew = (w1,w2, . . . ,wn) ∈ [0,1]n is a weight vector such that
∑n
i=1wi =

1 and the arguments are ordered such that x(1) ≤ x(2) ≤ . . . ≤ x(n).
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Definition 39 (Ordered Weighted Maximum [179]). An OWMax operator

(or ordinal OWA) is an aggregation operator defined by

OWMaxw(x1, x2, . . . , xn) =
n

max
i=1

min(wi, x(i)) (2.50)

wherew = (w1,w2, . . . ,wn) ∈ [0,1]n is a weight vector such that maxni=1wi =
1 and the arguments are ordered such that x(1) ≤ x(2) ≤ . . . ≤ x(n).

7.2 Fuzzy integrals

7.2.1 Evaluation scales

Before discussing some more advanced aggregation operators, it is impor-

tant to touch upon the different kinds of scales that can be used to measure

a quantity.

Nominal A nominal scale has no notion of order, e.g. color (red, blue, yel-

low) or gender (male, female). The only operation that is allowed is a

frequency count.

Ordinal On an ordinal scale, the categories have a logical or natural order-

ing, e.g. small, medium and large, but the difference between each

category is not necessarily the same. Hence, we can rank them, but

we cannot quantify the difference between two ordinal values. Arith-

metic operations are not legal. For example, a 2-star hotel is definitely

“less than” a 3-star hotel, but we cannot say “how much less”. Also,

the difference between a 2-star hotel and a 3-star hotel is not neces-

sarily the same as the difference between a 4-star hotel and a 5-star

hotel.

Cardinal (interval) If the distance between the ordered categories is al-

ways the same but there is no natural zero point, then we have a car-

dinal scale or an interval scale. E.g. the temperature scale in degrees

Celsius cannot express an absence of temperature, 0 ◦C is arbitrary

chosen as the temperature when water freezes. A cardinal scale al-

lows the addition and subtraction operation. The expression of ratios

is invalid although the mean of two cardinal values can be calculated.

The difference between 20 ◦C and 25 ◦C has the same physical mean-

ing as the difference between 50 ◦C and 55 ◦C. But we cannot really

say that 20 ◦C is twice as hot as 10 ◦C, because 0 ◦C is arbitrary chosen.

Ratio In a ratio scale, the categories are equidistant and there is a natural

zero point, e.g. age, length and weight. Ratio’s have a clear meaning.
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A length of 10 m is twice as long as 5 m, even if we would use yards

instead of meters this ratio would hold. This is because there is a

natural zero point.

7.2.2 Fuzzy measures

In section 6.1 a fuzzy measure µ : P(U)→ [0,1] has been defined as a basis

for probability, possibility and necessity measures. However, a fuzzy mea-

sure can also be used as an extension of a weight vector. It then becomes

not only possible to assign weights to single elements but also to combi-

nations of elements. This offers a lot of flexibility to assign weights, but at

the same time adds complexity in defining the fuzzy measure. There are

in fact three different approaches to specify a fuzzy measure. Consider a

fuzzy measure µ on the universe U = {u1, u2, . . . , un} with n ∈ N \ {0}.

Enumeration The most straightforward specification of a fuzzy measure

is by enumerating the fuzzy measure value for all elements and all

subsets of elements of U . This means that 2n−2 values in [0,1]must

be given!

Relationship Another option is to rely on a relationship that specifies how

to calculate the fuzzy measure value of a combination of elements

based on the fuzzy measure values of the individual elements. It

is then sufficient to specify only the fuzzy measure values of the n

singletons {ui} with i ∈ {1,2, . . . , n}.
The prototypical example of such a defining relationship leads to the

probability or additive measures P given by P(A∪B) = P(A)+P(B) if

A∩B = ∅withA,B ∈ P(U). Due to the normalization requirement of

fuzzy measures, one must make sure that P(U) =∑n
i=1 P({ui}) = 1.

Another example is the possibility measure Π defined by Π(A∪ B) =
max(Π(A),Π(B)) for all A,B ∈ P(U). It is easy to see that this fuzzy

measure satisfies the normalization requirement if at least one of the

values Π({ui}) equals 1 for i ∈ {1,2, . . . , n}.
One can also consider a generalization of possibility measures. If S

is a t-conorm, then it can be shown that the following µ is a fuzzy

measure.

Definition 40 (S-decomposable fuzzy measure [173]). A fuzzy mea-

sure µ is S-decomposable if there is a t-conorm S such that µ(A∪B) =
S(µ(A), µ(B)) for all A,B ∈ P(U).
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Alternative representation Finally, a completely different representation

scheme can be used based on some kind of transformation of the

fuzzy measure (e.g. [73]). For examples of such alternative represen-

tations, see chapter 5, section 3.2.

7.2.3 Fuzzy integrals

Classical integrals are defined with respect to classical (additive) measures.

As fuzzy measures are extensions of such measures, the notion of fuzzy

integrals arises naturally. Just as their crisp counterparts, fuzzy integrals

are defined on a function. In the context of aggregation operators, we

will restrict the discussion of fuzzy integrals to discrete domains U =
{u1, u2, . . . , un}. Hence the function will be a mapping f : U → E that

associates with each element in U an evaluation value on the evaluation

scale E.

Definition 41 (Choquet integral [35]). Consider a fuzzy measure µ on U

and a mapping f : U → R. The discrete Choquet integral of f with respect

to µ is defined as

Cµ(f ) =
n
∑

i=1

(

µ(H(i))− µ(H(i+1))
)

f(u(i)) (2.51)

where the arguments are ordered such that f(u(1)) ≤ f(u(2)) ≤ . . . ≤
f(u(n)), H(i) = {u(i), u(i+1), . . . , u(n)} and H(n+1) = ∅.

Note that the Choquet integral equals the classical Lebesgue integral

when the underlying fuzzy measure is additive. The Choquet integral re-

quires a cardinal scale in its calculation. Therefore, the evaluation scale E

must be a cardinal scale with E ⊆ R.

Definition 42 (Sugeno integral [148]). Consider a fuzzy measure µ on U

and a mapping f : U → [0,1]. The discrete Sugeno integral of f with respect

to µ is defined as

Sµ(f ) =
n

max
i=1

min
(

µ(H(i)), f (u(i))
)

(2.52)

where the arguments are ordered such that f(u(1)) ≤ f(u(2)) ≤ . . . ≤
f(u(n)) and H(i) = {u(i), u(i+1), . . . , u(n)}.

The Sugeno integral is derived by substituting the multiplication by the

minimum and the summation by the maximum operation. Contrary to the

Choquet integral, the Sugeno integral only requires an ordinal scale. Hence,

E must represent an ordinal scale with E ⊆ [0,1].
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Some properties of a fuzzy integral Fµ (either Choquet or Sugeno) with

respect to a fuzzy measure µ that are useful in the remaining of this work

are shown below [75].

1. Compensating behavior:

n

min
i=1

f(xi) ≤ Fµ(f ) ≤
n

max
i=1

f(xi) (2.53)

2. Monotonicity with respect to integrand:

f ≤ f ′ ⇒ Fµ(f ) ≤ Fµ(f ′) (2.54)

3. The WAMw operators are a subclass of the Choquet integrals.

4. The OWAw operators are a subclass of the Choquet integrals.

5. The OWMaxw operators are a subclass of the Sugeno integrals.

8 Approximate reasoning

8.1 Implicators

8.1.1 Definition

To be able to reason with fuzzy propositions, the concept of logical impli-

cation must also be extended to the fuzzy case. We have already shown

that there are an infinite number of possibilities to model the logical con-

junction, disjunction and negation in fuzzy logic. As the crisp implication

operator can be formulated in terms of these operations in several different

ways, it is clear that there are even a larger number of possible extensions

to fuzzy implications.

Definition 43 (Implicator [58]). An implicator I is a [0,1]2 → [0,1] map-

ping satisfying

(i) Border: I(0,0) = 1∧ I(0,1) = 1∧ I(1,1) = 1∧ I(1,0) = 0

(ii) Hybrid monotonicity:

(∀y ∈ [0,1])(∀(x1, x2) ∈ [0,1]2)(x1 ≤ x2 ⇒ I(x1, y) ≥ I(x2, y))

(∀x ∈ [0,1])(∀(y1, y2) ∈ [0,1]2)(y1 ≤ y2 ⇒ I(x,y1) ≤ I(x,y2))
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The given definition is very general and allows many implicators that

do not make sense from an intuitive point of view. Therefore, additional

axioms for implicators have been put forward [145]. Here, some of them

are simply considered as properties and useful for the rest of this work.

(I.1) (∀(x,y) ∈ [0,1]2)(x ≤ y ⇒ I(x,y) = 1)

(I.2) Neutrality: (∀x ∈ [0,1])(I(1, x) = x)

(I.3) Contrapositivity with respect to a negator N :

(∀(x,y) ∈ [0,1]2)(I(x,y) = I(N (y),N (x)))

(I.4) Exchange principle:

(∀(x,y, z) ∈ [0,1]3)(I(x, I(y, z)) = I(y, I(x, z)))

Definition 44 (Border implicator [41]). An implicator that additionally sat-

isfies the neutrality condition is called a border implicator.

Definition 45 (Dual implicator [58]). An implicator I∗N is dual to an impli-

cator I with respect to a negator N when it is defined as

(∀(x,y) ∈ [0,1]2)(I∗N (x,y) = I(N (y),N (x))) (2.55)

If an implicator I is contrapositive with respect to N then I∗N = I .

A dual implicator I∗N with respect to the standard negator NZ , N =
NZ , will be denoted as I∗.

8.1.2 Classification of implicators

In classical logic, the implication operator can be defined using a number

of tautologies, e.g. for the binary propositions P and Q, P → Q ≡ ¬P ∨Q.

Based on such tautologies and fuzzification of the underlying operators,

the following classes of implicators can be defined [58].

Definition 46 (S-implicator [58]). For S a t-conorm andN a strong negator,

the [0,1]2 → [0,1] mapping defined by

ISS,N (x,y) = S(N (x),y) (2.56)

is called a material implicator or S-implicator.
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Table 2.3: Implicators.

Name Implicator Class

Kleene-Dienes IKD(x,y) = max(1− x,y) ISSM ,NZ

Łukasiewicz IW (x,y) = min(1,1− x +y) ISSW ,NZ
, IRTW

K-D-Łukasiewicz IKDL(x,y) = 1− x + xy ISSP ,NZ

= Reichenbach

Gödel (-Brouwer) IGB(x,y) =











1 (x ≤ y)
y (x > y)

IRTM

= Standard Star

Gaines = Goguen IG(x,y) =











1 (x ≤ y)
y
x (x > y)

IRTP

Definition 47 (R-implicator [58]). For T a t-norm, the [0,1]2 → [0,1]map-

ping defined as

IRT (x,y) = sup{z ∈ [0,1] | T (x, z) ≤ y} (2.57)

is called a residual implicator or R-implicator.

A collection of the most prominent members of the defined classes of

implicators is listed in table 2.3.

8.1.3 Properties

Both families of S-implicators and R-implicators satisfy the neutrality (I.2)

and exchange principle (I.4). Only the residual implicators satisfy property

(I.1). The dual of S-implicators with respect to the standard negatorNZ are

again S-implicators (which is not true for R-implicators). For more details

on the properties of implicators, see [43] and [58].

8.2 Linguistic variable

It has already been stated that fuzzy sets are perfectly suited to model

gradual transitions of concepts in a context dependent and subjective way.

Such concepts are typically used in natural language statements, e.g. “Sarah

is young”. In [188] Zadeh has introduced the notion of a linguistic variable,
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a variable whose values are not numbers but words or sentences in a nat-

ural language. In the expression “Sarah is young”, “young” can be inter-

preted as a linguistic value of the linguistic variable “Age”. However, “age”

is also interpretable as a numerical variable, whose values are the numbers

0,1, . . . ,120. The numerical variable “age” is said to be the base variable

of the linguistic variable “Age”. Fuzzy sets on the universe [0,120] can be

used to represent the meaning of a linguistic value (“young”). Formally,

this leads to the following definition.

Definition 48 (Linguistic variable [190]). A linguistic variable is character-

ized by a quintuple (X, T(X),U,G,M)

(i) X is the name of the variable

(ii) T(X) is the term set of X, the set of its linguistic values or linguistic

terms

(iii) U is the universe of discourse

(iv) G is a syntactic rule which usually has the form of a grammar for

generating the terms in T(X)

(v) M is a semantic rule which associates with each linguistic value A its

meaning M(A), where M(A) denotes a fuzzy set in U . It is a mapping

T(X)→ F(U).

As an example [190], consider the term set for X = Age on U = [0,120],

T (Age) = { young, very young, not young, not very young,...

middle-aged, not middle-aged,...

old, not old, very old, more or less old, not very old,...

not very young and not very old,... }
With each element of T (Age) is a fuzzy set on F(U) associated which rep-

resents the meaning of the term.

In general, the term set consists of several primary terms (young, middle-

aged, old) modified by negation (not) and/or adverbs (linguistic modifiers

or hedges such as “very” and “more or less”) combined with connectives

(and, or). The negation, connectives and hedges are usually interpreted as

operators that modify the meaning of their operands. For the modeling

of the negation and the connectives, the fuzzy set operators have already

been extensively discussed. To model a hedge on a universe U , which is

defined as a mapping m : F(U) → F(U) that modifies the meaning of a

linguistic term, there are several possibilities. Some of them are briefly

given below.
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Table 2.4: Powering hedges.

Name α Linguistic modifier

Dilatation 0.5 more or less

Deaccentuation 0.75 minus

Accentuation 1.25 plus

Concentration 2 very

Definition 49 (Powering hedge [185]). For α ∈ [0,+∞[, a powering hedge

m on U is a hedge defined by

(∀u ∈ U)(µm(A)(u) = (µA(u))α) (2.58)

Typical values that are used for α and their associated linguistic modi-

fier are shown in table 2.4.

Definition 50 (Shifting hedge [102]). A shifting hedge m on R with α ∈ R
is a hedge defined by

(∀u ∈ R)(µm(A)(u) = µA(u−α)) (2.59)

A linguistic variable that plays an important role in reasoning applica-

tions is the fuzzy or linguistic truth variable [190]. The fuzzy truth values

that this variable can take are terms that characterize the degree of truth of

a statement, e.g. “absolutely false”, “very false”, “false”, “fairly false”, “not

absolutely true”, “not absolutely false”, “fairly true”, “true”, “very true”,

“absolutely true” [196]. The underlying universe of discourse of this vari-

able is [0,1], where “true” and “false” can be defined as

(∀x ∈ [0,1])(µtrue(x) = x) (2.60)

(∀x ∈ [0,1])(µfalse(x) = 1− x) (2.61)

8.3 Fuzzy rules

All elements that have been introduced so far can now be combined to delve

into the realm of approximate reasoning. In 1975, Zadeh has introduced

approximate reasoning [190] as

A mode of reasoning in which the truth values and the rules

of inference are fuzzy rather than precise. In many ways, ap-

proximate reasoning is akin to the reasoning used by humans
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in ill-defined or unquantifiable situations. Indeed, it may well

be the case that much –perhaps most– of human reasoning is

approximate rather than precise in nature.

More recently, Zadeh defined the notions of “computing with words” [193]

and “computing with perceptions” [195]. In these computing methodolo-

gies, the fuzziness in the reasoning process is only present behind the

scenes. The fuzzy sets are hidden behind the natural language statements

that represent the knowledge. In these statements, linguistic variables and

their values are used to represent human perceptions, e.g. “Sarah is young”,

“A car is big”. Approximate reasoning is used as a tool to raise the level of

abstraction from reasoning with numbers to reasoning with perceptions.

This is more closely linked to the way humans reason in everyday life sit-

uations.

The mechanisms that enable approximate reasoning are in fact fuzzifi-

cations from the reasoning principles found in binary logic. Special atten-

tion is paid to the fuzzification of the classical modus ponens. The modus

ponens, derived from Latin “mode that affirms”, reads

Rule: If X = A Then Y = B
Fact: X = A

Conclusion: Y = B

The rule expresses a relation between “X = A” (the rule antecedent) and

“Y = B” (the rule consequent).

The fuzzification of the modus ponens is called the Generalized Modus

Ponens (GMP) and is defined as

Rule: If X = A Then Y = B
Fact: X = A′

Conclusion: Y = B′

where X and Y are (linguistic) variables on U and V respectively, A,A′ ∈
F(U) and B, B′ ∈ F(V). Just as in the crisp case, the fuzzy rule represents

a relation R between the variables X and Y , with R ∈ F(U × V). It is very

important to observe that the fact “X = A′” does not need to match the

antecedent of the rule “X = A” in an exact way anymore. This explains

what “approximate” is all about. To illustrate the fact that this resembles

human reasoning more closely, consider the rule “If a tomato is red then

it is ripe”. Given the fact that “A tomato is more or less red”, people will

immediately deduce the conclusion that “The tomato is more or less ripe”.

This simple conclusion cannot be achieved with binary logic as the fact and

the antecedent of the rule do not match. Of course, one could argue that
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the problem can be solved by adding another rule, “If a tomato is more or

less red then it is more or less ripe”. However, this increases the complex-

ity of the system. Furthermore, in practical applications the domain can be

so complex with rather limited knowledge available, that it is impossible

to elaborate on all possible combinations of antecedents and consequents.

Zadeh refers to this observation as the “principle of incompatibility” which

states that high precision is incompatible with high complexity [190]. In or-

der to make significant assertions about the behavior of complex systems,

it may be necessary to abandon mathematical precision and become more

tolerant of approaches which are approximate in nature.

In the literature, different types of reasoning are found to actually calcu-

late the inferred knowledge “Y = B′”. These are generally called inference

schemes. The most widely adopted class of inference schemes are those

that were originally introduced by Zadeh [189]. They are based on the Com-

positional Rule of Inference (CRI), which is described next. Thereafter, some

other inference schemes are briefly mentioned.

8.4 Compositional rule of inference

8.4.1 Definition

The original inference scheme introduced by Zadeh is based on the ex-

pression of the rule as a fuzzy relation R and the composition of fuzzy

relations.

Definition 51 (Compositional Rule of Inference (CRI) [189]). For X and Y ,

two variables on the universes U and V respectively. Let “X = A′” and R the

fuzzy relation expressing the rule “If X = A then Y = B”, with A′ ∈ F(U)
and R ∈ F(U×V). The following conclusion can be deduced: “Y = A′◦T R”,

with A′ ◦T R defined by

(∀v ∈ V)(µA′◦T R(v) = sup
u∈U

T (µA′(u), µR(u,v))) (2.62)

In most applications, the sup-min composition is adopted.

In binary logic, an implication operator is used to enable the modus

ponens. As the CRI enables the use of the generalized modus ponens, it

is natural to adopt an implicator I to calculate the fuzzy relation R that

expresses a fuzzy rule,

(∀u ∈ U)(∀v ∈ V)(µR(u,v) = I(µA(u), µB(v))) (2.63)
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8.4.2 Parallel rules

In practical applications, the relation between variables is seldom fully de-

scribed by a single rule. Usually, multiple rules are needed to completely

specify their interactions. A set of rules that describe a relation between

the same variables are called parallel fuzzy rules. The reasoning process

of the GMP then becomes as follow, with n ∈ N \ {0}.

Rule 1: If X = A1 Then Y = B1

Rule 2: If X = A2 Then Y = B2

...

Rule n: If X = An Then Y = Bn
Fact: X = A′

Conclusion: Y = B′

Basically, there are two methods to handle parallel rules [97].

Local inference In this approach, also called First Infer Then Aggregate

(FITA), inference is performed with each individual rule. Afterwards

the results are aggregated.

Global inference In the First Aggregate Then Infer (FATI) strategy, the

fuzzy relations expressing the rules are first aggregated. After that,

there is a single inference step with the input fact and the aggregated

fuzzy relation.

Hence, in both cases an appropriate aggregator is required. Logical

considerations lead to the use of the intersection, so a n-ary triangular

norm must be adopted as aggregator.

Consider multiple crisp rules that describe a relationship between two

variables. When the antecedents and the consequents of the rules form a

complete partition of U and V respectively, it can be shown that the final

result of the intersection of all rules, will be equivalent with the union of

the relations Ri = Ai × Bi, i ∈ {1,2, . . . , n} with n ∈ N \ {0} the num-

ber of rules and Ai, Bi respectively the antecedent and consequent of rule

i [42]. This observation has inspired engineers to represent a fuzzy rule

“If X = Ai Then Y = Bi”, X and Y variables over the universes U and V

respectively, Ai ∈ F(U), Bi ∈ F(V) for i ∈ {1,2, . . . , n}, with the fuzzy

relation Ri defined by,

(∀u ∈ U)(∀v ∈ V)(µRi(u,v) = T (µAi(u), µBi(v))) (2.64)

withT a triangular norm (most commonly the minimum t-norm). Of course,

a triangular conorm must then be used to combine the fuzzy relations Ri
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(FATI) or the results from the fuzzy rules B′i (FITA). These schemes are

called a Mamdani controller [112]. They will be referred to as the “conjunc-

tion model”, whereas the natural extension of the logical implication will

be called the “implication model”.

The resulting inference schemes are summarized in table 2.5.

Table 2.5: Fuzzy inference schemes where Ri denotes the fuzzy relation

between X and Y expressed by the i-th fuzzy rule, i ∈ {1,2, . . . , n} with

n ∈ N \ {0}.
FATI FITA

Conjunction model B′1 = A′ ◦
(⋃n

i=1 Ri
)

B′3 =
⋃n
i=1(A

′ ◦ Ri)
Implication model B′2 = A′ ◦

(⋂n
i=1 Ri

)

B′4 =
⋂n
i=1(A

′ ◦ Ri)

An often stated theorem proofs that B′2 ⊆ B′4 ⊆ B′1 = B′3 [97]. However,

this is only true when the same fuzzy relationsRi, i ∈ {1,2, . . . , n}, are used

in all four formulas. As already shown, the relations Ri in the conjunction

model are modeled by a triangular norm and with a logical implicator in the

implication model. Therefore, the theorem is not very useful in practice,

except for the relations B′2 ⊆ B′4 and B′1 = B′3 separately. From this it

follows that FITA or FATI does not make a difference in the conjunction

model. In the implication model, FATI produces a more specific result,

more informative as the reasoning is restrictive. However, this does not

mean that FITA is wrong, it is just less informative.

8.4.3 Semantics

When multiple rules are used to describe the relationship between two vari-

ables, it has been shown that an individual rule representation Ri satisfies

µAi(u)∧ µBi(v) ≤ µRi(u,v) ≤ µAi(u)→ µBi(v) (2.65)

The conjunction offers a lower bound which is not completely representing

the available information but just provides a representation that is not

inconsistent with the information.

In [55] and [56], Dubois and Prade have investigated the semantics of

fuzzy IF-THEN rules. They distinguish three different rule interpretations,

depending on the operator used to construct the rule representation R.

In their analysis, they treat the two inequalities of (2.65) separately and

view the rule as a partial specification of a possibility distribution πY |X
pertaining to the value of Y given the value ofX. Here, we content ourselves
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with a brief discussion of their obtained results. For more details, the

reader is referred to [55] [56] and [60].

Possibility qualifying In this interpretation, the rule relation is modeled

with a t-norm (conjunction model). The consequent is viewed as a

lower bound, the values that are guaranteed possible, when the an-

tecedent is satisfied. The underlying semantics of the rule is “the

more X is A, the more possible B is a range for Y ”, e.g. “the more

cloudy the sky is, the more possible it will rain soon”.

Certainty qualifying When an S-implicator is used to represent the rule

(implication model), the possibility degree of the consequent (inter-

preted as “certain”) is decreased when the satisfaction of the an-

tecedent (the matching between A and A′) decreases. The associated

rule semantic is “the more X is A, the more certain Y is B”, e.g. “the

younger the man, the more certainly he is single”.

Truth qualifying In the case the relation is modeled with an R-implicator

(implication model), the core of the consequent is extended when the

satisfaction of the antecedent decreases. The result is a gradual or

truth qualifying rule, “the more X is A, the more Y is B”, e.g. “the

more a tomato is red, the more ripe the tomato is”.

In the conjunction model , the rules represent the lower bound of the

inequality (2.65). They express a knowledge gathering process [56], addi-

tional information may raise the lower bound (with a triangular conorm).

If the rules are modeled with an extension of the logical implication oper-

ator, e.g. S-implicator or R-implicator (implication model), they are viewed

as constraints that restrict the possible set of solutions (the upper bound

of the inequality (2.65)). Improving precision with more information leads

to eliminating some of the remaining solutions (with a triangular norm).

8.4.4 Implementation

In a Mamdani controller (conjunction model) in which the same triangu-

lar norm T is used both to construct the fuzzy relations and to compose

the relations and the input, e.g. minimum t-norm based on sup-min com-

position, the calculation of the rule result “If X = A then Y = B” can be

significantly simplified. Based on the associativity and the left-continuity

of a triangular norm, the inference scheme can in these cases be reformu-
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lated as, ∀v ∈ V ,

µB′(v) = sup
u∈U

T (µA′(u),T (µA(u), µB(v))) (2.66)

= sup
u∈U

T (T (µA′(u), µA(u)), µB(v)) (2.67)

= T (sup
u∈U

T (µA′(u), µA(u)), µB(v)) (2.68)

= T (hgt(T (A′, A)), µB(v)) (2.69)

= T (α, µB(v)) (2.70)

where α = hgt(T (A′, A)) is called the degree of fulfillment or the adapt-

ability or the firing strength of the fuzzy rule.

This simplification eliminates the need to explicitly calculate the fuzzy

relations and the fuzzy composition. As an additional advantage, the sim-

plification can be extended to multiple rule antecedents. In the general CRI,

this would require the explicit calculation of three-or more dimensional

fuzzy relations which becomes quite complex.

8.5 Other inference schemes

Although the CRI is widely used in practice, it is not the only inference en-

gine to implement fuzzy rules. However, it provides clear semantics and

therefore will be exclusively used in this work. For the sake of complete-

ness, some other proposed methods are briefly mentioned.

The method proposed by Baldwin [8] is based on fuzzy truth values.

First of all, the fuzzy truth value of the rule antecedent is calculated based

on the knowledge of the given input fact. Next, the fuzzy truth value of the

rule itself, calculated as I(true, true), is modified to reflect the partial truth

of the antecedent. Finally, the rule consequent is modified to take into ac-

count this obtained truth value of the rule, given the input fact. These

methods have the advantage that the inference step is exclusively calcu-

lated in the interval [0,1]. However, this mapping into the unit interval

may also affect the precision of the rule outcome, especially in computer

implementations.

Yager has introduced what is now called “approximate analogical rea-

soning” [176]. It is a two step inference procedure. In the first step, the

similarity degree between the rule antecedent and the input fact are mea-

sured with a similarity measure. Secondly, the rule result is obtained by

applying a modification function to the rule consequent which takes the

calculated similarity degree as parameter. This inference scheme for the

rule “If X = A then Y = B” given the input fact “X = A′” can be formulated
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as

B′ = f(Sim(A,A′), B) (2.71)

where Sim and f are appropriate functions. For some possibilities we refer

to [176] and [153]. Note that the conjunction model based on a t-norm T
can be obtained when Sim(A,A′) = hgt(T (A,A′)) and f = T .

9 Generalizations

Quite shortly after the introduction of fuzzy sets, generalizations of the

concept have been published. Some of them are briefly mentioned here.

L-fuzzy sets Fuzzy sets over a general lattice L instead of the unit inter-

val [0,1] have been introduced in 1967 by Goguen [72]. The lattice L

must be a complete lattice (L,∧,∨,0,1). An L-fuzzy set is then char-

acterized by the membership mapping µA : U → L where U is the uni-

verse of discourse. This generalization is especially useful to model

incomparable information, because such incomparable elements do

not exist in the unit interval [0,1]. The set of all L-fuzzy sets on the

universe U is denoted as FL(U). Hence, the following equalities can

be stated: F(U) = F[0,1](U) and P(U) = F{0,1}(U).
Level-2 fuzzy sets These fuzzy sets allow to express the uncertainty over

fuzzy sets. They were proposed by Zadeh in [185].

Definition 52 (Level-2 fuzzy set [58]). Let U denote the universe of

discourse. Define the (level-1) fuzzy sets Ai = {(u, µAi(u)) | ∀u ∈
U : µAi(u) > 0}. The level-2 fuzzy set B is then defined as B =
{(Ai, µB(Ai)) | ∀Ai ∈ F(U) : µB(Ai) > 0}.

Type-2 fuzzy sets A fuzzy set is of type-2 (or more generally type-n) if its

membership function ranges over fuzzy sets of type-1 (type-(n−1)).

The membership function of a type-1 fuzzy set ranges over the unit

interval [0,1] [188]. A point-wise definition is given in [117].

Definition 53 (Type-2 fuzzy set). A type-2 fuzzy set Ã is characterized

by a type-2 membership function µÃ(x,u), where x ∈ X and u ∈ Jx ⊆
[0,1], i.e.

Ã = {((x,u), µÃ(x,u)
) | ∀x ∈ X,∀u ∈ Jx ⊆ [0,1]

}

(2.72)

in which 0 ≤ µÃ(x,u) ≤ 1.

It should be mentioned that a type-2 fuzzy set is in fact a L-fuzzy set

with L = (F(X),∩,∪).



Notational conventions 45

10 Notational conventions

In the rest of this work, we will adopt the convention to use the same symbol

to denote a linguistic term, the fuzzy set representing the meaning of this

term as well as the membership function that characterizes the fuzzy set.

So instead of µA(u) we will simply write A(u) where A is the fuzzy set that

models the linguistic term A.





Chapter3

Representing noise

annoyance

‘When I use a word,’ Humpty Dumpty said in rather a scornful

tone, ‘it means just what I choose it to mean — neither more

nor less.’ ‘The question is,’ said Alice, ‘whether you can make

words mean so many different things.’

Lewis Carroll (1832-98)

English mathematician and writer

1 Annoyance scales

The first thing one must do before even starting to consider modeling a

concept is to devise a suitable representation for it. As this work is con-

cerned with the modeling of noise annoyance, we need a way to represent

the concept of noise annoyance. How should the model express its result

to us, what do we expect as output from the model?

An important aspect of representation is the underlying scale. Contrary

to many quantities encountered in every day life, such as length and weight,

there is no universally accepted scale for noise annoyance (although even

for length and weight several scales are in existence, e.g. the British system

and the metric system). This could be explained by the absence of some

kind of physical scale. In case of the meter, it can be defined as the distance

light travels in vacuum within a specified amount of time, which is in turn

defined by some radiation properties of chemical elements. Instead, noise

annoyance is a psychological construct. This fact has two consequences.

First of all, an imaginary scale with an appropriate granularity has to be

47
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created for its representation. As a heuristical guiding principle for the

granularity, the analysis performed by Miller is useful here [125]. He has

shown that the “span of absolute judgement” of a unidimensional stimu-

lus variable (e.g. sound tones, sound loudness, taste of salt solutions,...)

is seven plus or minus two. This means that people can roughly distin-

guish seven levels, five for the man in the street and nine for an expert in

the field. It is assumed that these results also apply to the noise annoy-

ance concept. Secondly, annoyance cannot be measured with equipment.

Data about the level of experienced noise annoyance must be gathered by

means of social surveys. Such studies can be performed face-to-face or by

telephone, in which an interviewer asks questions directly to the partici-

pants and writes down their answers on a form. More commonly they are

conducted by mail. In this setting, respondents are kindly requested to fill

in a questionnaire and send it back. Several ways to answer the questions

regarding the experienced noise annoyance have been used in surveys. A

first approach gives the respondents some categories numerically labeled

from 1 till 4, 5, 7 or 9, or from 0 till 10. They must choose one of these,

where 1 (or 0) indicates no annoyance at all and the highest number means

the highest possible degree of annoyance one can imagine. Sometimes, a

continuous line is used. In this type of question, the respondents must put

a mark to indicate their level of annoyance. The left point of the line is

labeled as not at all annoyed, while the right point is labeled as the highest

degree of annoyance. A third approach uses a verbal scale with four or

five linguistic labels. This kind of scale introduces the additional complex-

ity of language, although a linguistic expression is a far more natural way

for people to describe their perception of annoyance than using any kind

of numbers. However, it can no longer be guaranteed that all presented

categories are equidistant. Yet, it is important to mention the results of a

small laboratory experiment by Rohrmann. He gave two different surveys

to two different groups. In the first survey, the annoyance question had

to be answered on a 5-point linguistic scale on which “very” was the label

for the fourth term, and “extremely” was the label for the fifth term. The

other group had to answer the annoyance question on a 4-point linguistic

scale on which “very” was the last label. After judging the same 13 noises,

31 % was at least very annoyed in the first group, while in the second group

only 14 % was at least very annoyed. This could indicate that people not

only judge the meaning of the word but also tend to equally distribute the

meaning over the number of presented categories.

An obvious disadvantage of this plethora of scales is the difficulty to

compare the results of surveys. This greatly reduces the available amount

of data one can use to model annoyance and to extract as much knowl-
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edge as possible from all collected data. This is even a bigger problem for

surveys using verbal scales. For such studies, six comparison issues can

be identified which are mainly depending on the vocabulary used in the

survey [160].

Language As the translation of words to another language is probably

never really exact, the language of the survey is an important com-

parison barrier.

Terminology Although the results of the experiment by Rohrmann in-

dicate the tendency to equidistantly distribute the number of cate-

gories, even in case of verbal labels, the meaning of the given terms

will undoubtedly play an important role. Perhaps this will be espe-

cially true in studies conducted face-to-face or by phone. Then, peo-

ple not really see the number of labels, they only remember the words

and will answer according to the meaning they associate to them.

Anyway, the annoyance terms should be carefully selected to cover

the whole universe. E.g. one should avoid that no term is available to

describe the middle category of annoyance or that almost synonyms

are used for the two upper-categories.

Scale Surveys using a 4-point scale are difficult to compare with a 5-point

scale from another study.

Questioning The exact phrasing of the annoyance question can also in-

fluence the way people answer. Even the position of the annoyance

question in the survey, the preceding and following questions, are

important.

Culture Differences in the language culture, e.g. the tendency to choose

extreme categories, can also affect the results of a survey.

Survey context What is the survey about, how is the annoyance question

related to the topic of the survey, and how is the topic of the survey

presented to the people. These context questions set the trend for all

answers given by the participants.

Historically, in the acoustical literature the term “highly annoyed” (HA)

has achieved special status as an important degree of annoyance to model.

Therefore researchers needed a way to convert the results of surveys with

numerical scales into the linguistic term “highly”. A common cutoff point

for “highly annoyed” is 7.2 on a scale from 0 to 10 [140]. Other common

cutoff points used are 5.0 for “annoyed” (A) and 2.8 for “little annoyed”

(LA) [123]. Below 2.8 is interpreted as “not at all annoyed”. Everyone will
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undoubtedly agree that such cutoff points are arbitrary and such sharp

transitions are not in true correspondence with the actual meaning of the

terms.

In this thesis, noise annoyance is addressed as an inherent vague con-

cept. It is a feeling, a state of mind that results from the perception of noise,

which cannot be expressed using either (crisp) numbers or crisp intervals.

However, this feeling can be communicated with natural language. If some-

one says that he’s “somewhat annoyed”, we will all know more or less how

that person feels, although the term has no exact numerical meaning. It is

merely a vague expression with blurred boundaries. Its boundaries are not

sharp points but regions where the term gradually moves from being ap-

plicable to nonapplicable. Furthermore, noise annoyance is subjective and

context-dependent. An annoyance term can have a slightly different mean-

ing to different people, and in different contexts, such as the modeling of

noise versus annoyance caused by odor or light.

Vague concepts that are subjective and context-dependent are perfect

candidates to be modeled as linguistic variables (see chapter 2, section 8.2)

in the framework of fuzzy set theory [188] [82]. This allows an accurate

mathematical representation of the blurred boundaries of annoyance ex-

pressions.

In order to represent the noise annoyance concept as a linguistic vari-

able, the following tasks must be performed.

• Determine an appropriate universe of discourse.

• Construct for each linguistic value for noise annoyance a fuzzy set

that represents its meaning.

Before addressing these points, we will first describe the International An-

noyance Scaling Study. This research project has been set up by the acous-

tical community in order to facilitate comparisons between future surveys.

Please note that this study was performed with statistical (non-fuzzy) pro-

cessing in mind. Still, the results will also turn out quite useful for our

purposes.

2 International Annoyance

Scaling Study

In 1993 the Community Response to Noise Team (Team 6) of the Interna-

tional Commission on the Biological Effects of Noise (ICBEN) developed a

program to reach an international agreement on the choice of linguistic
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labels for answering annoyance questions in surveys [65]. The goal was to

devise an equally distributed, linguistic interval scale. In all participating

languages the terminology for a four-point as well as a five-point linguis-

tic noise annoyance scale has been carefully selected. In the same process

standardized noise reaction questions have been agreed upon, to remove

issues with the questioning dependency.

The procedure started with selecting a pool of 21 modifiers (adverbs)

of annoyance. These terms were then presented to a mixture of university

students and employees of technical firms. The average age was about 35

years, but varied from 19 to 44 for different study sites. After providing

some background information the subjects completed the questionnaire

by performing the following four tasks to evaluate the 21 words.

Task 1 Subjects placed each word in one of nine groups ranked from “no

annoyance at all” to “the most annoyance you can imagine.” The pur-

pose of this task was mainly to get the respondents acquainted with

the words. Its results have not been used in the final analysis.

Task 2 Subjects indicated the intensity associated with each word by plac-

ing a mark on a 10 cm line that extended from “No/lowest degree of

annoyance” to “Highest degree of annoyance.”

Task 3 Subjects selected one preferred word to describe each category on

a 5-point scale. First by choosing a word “that you would be most

likely to use” for the “greatest amount of bother or annoyance you

might feel” and then expressing a preference for the three words that

should complete the remaining three points on a 5-point scale. The

lowest point was predetermined as “not at all annoyed”.

Task 4 The same preference question as task 3 but for a 4-point scale.

For both the 4- and 5-point preference questions subjects were instructed

to choose words that “people would normally use when talking”. Subjects

were instructed to select words that were “equally spaced” between “not at

all annoyed” and the previously chosen high annoyance word. The ques-

tionnaires were completed by 1 754 subjects at over 25 sites in 12 coun-

tries in nine languages. The number of respondents for each language:

Dutch/Flemish=93, English=231, French=45, German=61, Hungarian=47,

Japanese=1102, Norwegian=56, Spanish=59, Turkish=60.

A separate but identical analysis has been conducted for each language.

The results of this analysis have been used to select the labels of a four-

point and five-point annoyance scale. The selection procedure was based

on eight different ratings including the average and standard deviation of

the positions of the intensity marks placed on the 10 cm line. These two
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ratings for the English and Dutch terms as well as the final selected words

are shown in table 3.1. Furthermore, the results of the analysis indicated

that the top two categories of the 5-point scale can be combined to define

the popular “highly annoyed” expression.

Table 3.1: English and Dutch annoyance terms with their intensity average

µ and standard deviation σ . Selected labels for the 5-point scale are in

bold, 4-point scale in italic.

Code English µ σ Dutch µ σ

L01 not at all 0.08 0.50 helemaal niet 0.04 0.07

L02 insignificantly 0.76 0.86 niet 0.14 0.26

L03 barely 0.81 0.81 nauwelijks 0.94 0.77

L04 hardly 1.03 1.24 weinig 1.24 0.65

L05 a little 1.32 0.81 iets 1.57 1.03

L06 slightly 1.54 0.94 lichtelijk 1.64 1.00

L07 partially 2.96 1.30 een beetje 1.65 0.94

L08 somewhat 3.57 1.53 enigzins 2.59 1.35

L09 fairly 4.05 1.49 matig 3.44 1.39

L10 moderately 4.37 1.09 tamelijk 3.92 1.47

L11 rather 4.79 1.72 behoorlijk 6.21 1.70

L12 importantly 6.51 1.43 aanzienlijk 6.81 1.57

L13 considerably 6.22 1.70 veel 6.90 1.20

L14 substantially 6.45 1.53 erg 7.42 1.08

L15 significantly 6.72 1.42 sterk 7.79 1.06

L16 very 7.56 1.21 zeer 8.03 0.87

L17 highly 7.87 1.08 ernstig 8.05 1.02

L18 strongly 7.97 0.94 enorm 8.59 0.99

L19 severely 9.07 1.14 ontzettend 8.74 0.93

L20 tremendously 9.23 0.94 uitermate 8.91 1.03

L21 extremely 9.49 0.87 extreem 9.78 0.27

It has already been pointed out that the same research project also pro-

posed standardized noise annoyance reaction questions. The preferred

wording that has been agreed upon is “Thinking about the last (..12 months

or so..), when you are here at home, how much does noise from (..noise

source..) bother, disturb, or annoy you: Extremely, Very, Moderately, Slight-

ly or Not at all?” The words appearing in parentheses are to be replaced
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by phrases that are most appropriate for the noise source and time period

being studied. An extensive report on this research and its results can be

found in [65] and [61].

In [114] the results of this study for English and Japanese have been

compared to the results of a similar experiment conducted with bilingual

subjects. In total, 39 respondents had English as their first language and

37 respondents had Japanese as first language. All subjects had to fill in

basically the same questionnaire as in the ICBEN study, both in English

and in Japanese. According to their conclusions, the English and Japanese

scales proposed by the ICBEN team are indeed equivalent.

Recently, an analogous noise annoyance scaling study and analysis has

been conducted for other languages such as Korean [88] and Chinese and

Vietnamese [181]. These results are not considered in this work.

3 Constructing annoyance terms

3.1 Overview

The foregoing discussion brings us back to the first problem of determin-

ing a universe for the linguistic noise annoyance variable. Based on the

International Annoyance Scaling Study and other existing literature, the

continuous interval [0,10] has been chosen. This choice is justified by the

observation that all numerical scales that have been used in the past social

surveys can be easily mapped onto this domain, the equidistant numeric

categories as well as the continuous line marks. This is important in order

to obtain an annoyance representation that solves all previous comparison

issues. Throughout this work the linguistic variable “annoyance” will be

denoted with the symbol H . For the universe of annoyance the notation

H = [0,10] is used. The set of linguistic values H can take will be written

as L = {L1, L2, . . . , Lm} with m ∈ N. L is then a generic element from this

set.

Remark that the reduction of a linguistic term to a single interval H is

in fact an oversimplification. Words in a language are a complex construct

and involve many different dimensions such as the frequency of usage, the

atmosphere,... and the intensity. Here, we are only interested in the latter,

so we limit ourselves to this single dimension.

The fuzzy literature has historically interpreted adverbs such as “slight-

ly”, “very”,... as linguistic modifiers or hedges that alter the meaning of a

linguistic term. Although this approach is also applicable for the concept

of noise annoyance, it is our belief that the base term “annoyed” not really
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expresses a certain degree of annoyance. It is merely a statement that there

is annoyance. Hence, we will treat linguistic expressions such as “slightly

annoyed”, “very annoyed” as single terms rather than as a term modified

by a hedge. This view is in accordance with the viewpoint that has been

taken in the International Annoyance Scaling Study. It should be noted that

the fuzzy literature usually does not modify middle terms, such as “middle

aged” either [46].

One of the first experiments conducted on the fuzzy analysis of lin-

guistic terms has been done by Hersch and Caramazza [82] in 1976. Be-

sides the conclusion that natural language concepts can be described more

completely and manipulated more precisely in the framework of fuzzy set

theory, their research has also revealed that there are two fundamentally

different interpretations of linguistic terms, what they have called the log-

ical and the linguistical interpretation. The logical approach, which we will

refer to as the inclusive interpretation [46], assumes that everyone who is

“extremely annoyed” is also considered to be “very annoyed”. Each mem-

bership function takes the form of an S-shape. The terms obey the semanti-

cal entailment principle which means as much as the following relationship:

extremely annoyed ⊆ very annoyed. In this view, the terms are implicitly

interpreted with the prefix “at least”, e.g. everyone who is “extremely an-

noyed” will also be “at least very annoyed”. To illustrate this interpretation,

consider a boy who is asked to name the “very beautiful” girls from a row

of ten girls. After this difficult task, if the same boy is then asked to name

the “extremely beautiful” girls, he will surely choose only within his pre-

vious selection. Hence his first selection contained in fact the girls that

are “at least very beautiful”, including the “extremely beautiful” ones. The

linguistical interpretation, which we will call the non-inclusive interpreta-

tion [46], does not satisfy the semantical entailment principle and results in

bell-shaped membership functions (except for the left-most and right-most

terms that are usually decreasing and increasing respectively) that do over-

lap each other. This view is a much more pragmatical one which is not only

guided by (logical) truth. Also the “added value” of the word, as it is used

in daily life, is taken into account. When a boy is asked to write down the

names of the “very beautiful” girls and those of the “extremely beautiful”

girls, he will not write down the same name twice in both categories.

In the remaining part of the section, for each noise annoyance term, each

linguistic value L of the noise annoyance linguistic variable H , a fuzzy set

that represent its meaning will be constructed. Several such construction

methods have been described in the literature. They can be roughly cate-

gorized as followed.

Inquiry-driven This group of methods poses questions to experts of which
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the answers can be rather directly used to construct the fuzzy set

representation of a linguistic term.

Fuzzy clustering With this approach, data is first clustered and the rele-

vant fuzzy sets are then automatically extracted from these clusters.

Probability based Using the links between probability theory and possibil-

ity theory, it is possible to transform a probability distribution into a

possibility distribution (see section 3.2.2). This also results in a fuzzy

set.

Fuzzification based Fuzzification methods are based on the assumption

that an answer to an inquiry should not be interpreted as a crisp point

but rather as a possibility distribution. Therefore, inquiry answers are

first fuzzified and then aggregated.

The first two methods will only be discussed briefly for the sake of com-

pleteness. The latter two categories will be investigated more thoroughly

in separate sections and extended for our specific purposes. They will be

demonstrated for the case of the five English noise annoyance terms that

have been selected by the International Annoyance Scaling Study: L1 = “not

at all annoyed”, L2 = “slightly annoyed”, L3 = “moderately annoyed”, L4 =

“very annoyed” and L5 = “extremely annoyed”, with L = {L1, L2, . . . , L5}.
As a fifth category of techniques, modifier methods could be mentioned,

which try to model a term (e.g. “very annoyed”) by applying a hedge (“very”)

to some representation for the base term “annoyed”. However, as already

explained, in this work the annoyance terms will be considered as one, so

these methods will not be pursued any further.

3.1.1 Inquiry-driven methods

In order to obtain the degree of compatibility A(u) for a certain linguistic

termA for each elementu of the universeU , these methods pose questions

to experts that more or less directly allow to map the results into a fuzzy

set representation of A. However, for the wording of the questions, several

possibilities are in use. Each time a number of discrete elements ui ∈ U ,

with i ∈ {1,2, . . . , n}, are presented.

Direct rating One possibility is to directly ask one or more experts, or the

group in which the experiment is conducted, for the membership de-

gree of some elements ui, for example: “How A is ui?” [152].

Reverse rating In this approach, the questions are formulated in reverse

form: “Which element ui has a given degree A(ui) of membership in

A?” [152].
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Polling In the two methods described above, people are asked very directly

to assign a certain degree of membership to some elements. This

is for most domains very difficult and at the same time somewhat

arbitrary. Hersh and Caramazza [82] overcome this, by asking only

yes/no questions of the form: “Does ui belong to A?”. Afterwards,

A(ui) is calculated as the total number of “yes” responses for ui
divided by the total number of responses forui (yes and no together).

Indirect rating These methods also try to replace the direct assignments

of degrees with simpler tasks, for instance with pairwise compar-

isons which are generally easier to estimate. One such method is

the analytic hierarchy process (AHP) [115], where questions are asked

as “To what degree does ui imply A in comparison with uj?” with

j ∈ {1,2, . . . , n} and i ≠ j. If the cardinality of the universe is an in-

teger n, then all those answers, for instance on a discrete scale from

1 till 10, result in a square matrix P of order n with Pij = 1/Pji.

After column-wise normalization, A(ui) is then calculated as the (if

desirable, again normalized) row average of the i-th row of P .

These questions always result in couples (ui, A(ui)). To finally deter-

mine the fuzzy set representation, any curve fitting method can be used,

such as Lagrange interpolation and the least-square-error method. Other

techniques such as learning through neural networks can also be applied

for this purpose [97] [167].

Because the universe of the annoyance concept is quite abstract, the

scale [0,10] does not correspond to any quantity people can experience,

inquiry-driven methods are not suited for our purposes.

3.1.2 Fuzzy clustering methods

The primary goal of fuzzy clustering algorithms, such as the fuzzy c-means

(FCM) algorithm [85], is to partition a given set of data or objects into fuzzy

subsets called clusters such that objects strongly belonging to the same

cluster (the membership degree of both objects to that cluster are close to

1) are as “similar” as possible and objects that belong to different clusters

(the membership degree of one of those objects to that cluster is close to

0) are as “different” as possible. The notions “similar” and “different” are

defined by a user given dissimilarity measure d (for instance, the Euclidean

distance in a metric space). The aim of the clustering procedure is then

to globally minimize this dissimilarity between elements belonging to the

same cluster. In a two-dimensional universe U × V , clustering is often

used to extract the relationship between a variable X on U and a variable
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Y on V . Each cluster C (which is a fuzzy set on U × V ) gives rise to a

fuzzy rule of the form: “IF X = A THEN Y = B”, in which A and B are

fuzzy sets on U and V respectively, obtained by “projecting” C on U and

V respectively. A common practice in the field of fuzzy clustering is to

assign ad hoc linguistic terms to the obtained fuzzy sets A and B. This

way, the resulting rules are fully linguistical and easy to understand by

domain experts, not necessarily having much knowledge of fuzzy logic.

By way of construction it is obvious that there will be a strong coupling

between the representation of the terms and the training data. This has two

significant consequences. First of all, the training data as well as the result-

ing fuzzy sets may be biased and not necessarily represent a generalizable

relationship. Secondly, the number of terms is dependent on the number

of clusters in the data. Furthermore, the assignment of linguistic terms to

the retrieved fuzzy sets is ad hoc, so in general the membership functions

associated with the terms do not represent the meaning that people give

to the terms. At least there is no well-defined link between the linguistic

meaning of a term and the generated fuzzy set. For these reasons, fuzzy

clustering is not well suited to construct a representation for the meaning

of linguistic terms.

3.2 Probabilistic methods

3.2.1 Basic procedure

The construction of membership functions presented in this section is

based on a pure probabilistic approach, which resembles more or less to

the polling method. The underpinnings of these methods can be found

in the possibility/probability consistency principle [191]. Although it is not

a precise law, it provides a heuristic relationship that forms a basis for

the computation of a possibility distribution out of a probability distribu-

tion. The general strategy is to calculate the frequency histogram of points

that have been evaluated as being suitable for a given linguistic term L by

a number of people. This frequency distribution is then interpreted as –

normalized to– a probability distribution and transformed into a possibility

distribution for that linguistic term. Hence, this results in a fuzzy set that

represents the meaning of the term L. Several such probability-possibility

transformation schemes have been proposed which will be described in

detail further on.

This procedure does not depend on any other data than the evaluation

of the terms itself, so there can be no bias towards accidental relations

in data. Also, the questions asked to collect the data can be formulated
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in many different ways, contrary to the inquiry-driven methods such as

polling. This means that one can use the most natural formulation for the

problem at hand. It allows to use data sets that were not specifically gath-

ered for fuzzy processing. These qualities make the probabilistic methods

ideally suited to generate the meaning of the noise annoyance terms. In

fact, the data collected in the framework of the International Annoyance

Scaling Study turn out to be useful for this purpose. Another property

of these approaches is that the construction of the representation of the

meaning of a given term, is completely independent of the other linguistic

terms involved.

Corresponding to the notations L1 to L5 for the five English annoyance

terms from the International Annoyance Scaling Study and their associated

membership functions, the marks placed by a respondent k will be repre-

sented as hk1 to hk5 (in H = [0,10]), with k ∈ {1,2, . . . , N} and N the total

number of English respondents. The index j will run through {1,2, . . . ,5}.
The link with the polling method is obvious when the mark hkj of a respon-

dent for one of the terms Lj is interpreted as a pair (hkj , yes) for Lj in the

polling method. The answers for the other pointsh ∈ H\{hkj} can be added

based on some intuitively justified assumptions. If we assume “no” as the

answer for all unknown points, the average number of “yes” answers for all

h taken over all respondents leads to the construction of the probability

distribution function. After the transformation to a possibility distribu-

tion, the result will be a representation of the non-inclusive meaning of

the linguistic term. Another realistic assumption is that the respondent

would have answered “yes” for all points h ≥ hkj , that his mark hkj really

meant “at least Lj”. In this case, the average number of “yes” responses

for all h over all respondents corresponds to the cumulative probability

distribution function. Hence, this assumption will lead to a representation

for the inclusive meaning of the term Lkj . This approach works well for all

annoyance terms, except for L1 = “not at all annoyed”. For this term, the

respondent would have meant “yes” for all h ≤ hk1 and “no” for all h > hk1.

As a consequence, the reverse cumulative probability distribution function

should be used. Note that the probability density function can also be con-

structed as the derivative of the cumulative distribution function, which

avoids discretization.

The resulting fuzzy sets may be cluttered with noise that originates

from noise in the probability distribution. This noise appears especially

in the tails of the distribution and can be removed in a number of ways.

The scale can be reduced by discretizing the data into a smaller number of

intervals. Alternatively, a smooth curve, e.g. a sigmoidal or a bell-shaped

membership function, can be fitted to the possibility distribution that re-
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sults from the transformation. This has the additional advantage that the

representation of the meaning of a term can then be described by a small

number of parameters. However, one should be aware that the noise in

the probability distribution will affect the transformation procedure which

may disturb the outcome. Therefore, this approach is perhaps only feasi-

ble when a transformation method is applied which is not influenced by

such noise. Another reasonable approach is to fit a curve on the probabil-

ity distribution, although the transformation must then be applied to these

fitted curve values.

3.2.2 Probability-Possibility transformations

The simplest transformation is the maximum normalization frequency trans-

formation [93]. It is based on the fact that probability theory is additive

normalized while possibility theory is maximum normalized. So, instead

of normalizing the absolute frequency distribution to a probability distri-

bution such that the sum of all frequencies is 1, it is normalized to give

the maximum frequency the value 1. Starting from the probability distri-

bution p on a discrete domain {h1, h2, . . . , hn} with i ∈ {1,2, . . . , n} and

using pi = p(hi), this leads to the following possibility distribution π us-

ing πi = π(hi),
πi = pi

pmax
(3.1)

where pmax is the highest probability. There is also an inverse transforma-

tion defined by

pi = πi
∑n
j=1πj

(3.2)

Note that the cumulative probability distribution function is already maxi-

mum normalized by construction, so no further transformations are neces-

sary. As the formulas are purely point-wise, they only depend on the value

in one point, there is no danger to disturb the result in the presence of noise

e.g. in the tails. Hence, a smooth curve can be safely fitted afterwards. The

results for our five annoyance terms are shown in figure 3.1.

Another transformation method is called the uncertainty invariance fre-

quency transformation and has been introduced by Klir [116]. The under-

lying principle of uncertainty conservation states that a switch from one

theory to another must conserve the uncertainty. In probability theory the

well-known Shannon entropy H(p) is used to measure the uncertainty of

the probability distribution p which is defined as

H(p) = −
n
∑

i=1

pi log2 pi (3.3)
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Figure 3.1: Representation of the meaning of five annoyance terms (not

at all, slightly, moderately, very, extremely) when the maximum frequency

normalization transformation is applied (left: non-inclusive, right: inclu-

sive)

In possibility theory there are two different types of uncertainty that must

be taken into account, the non-specificity (spread, diversity) N(π) and the

discord (ambiguity, strife) D(π) of the possibility distribution π . The for-

mer provides an indication for the size of the distribution (in terms of cardi-

nality) while the latter measures the degree of inconsistency (conflict) in the

information. To calculate N and D, it is assumed that the possibilities are

ordered so that π1 ≥ π2 ≥ . . . ≥ πn, which results in the definitions [116]

N(π) =
n
∑

i=2

πi log2
i

i− 1
(3.4)

D(π) = −
n−1
∑

i=1

(πi −πi+1) log2



1− i
n
∑

j=i+1

πj

j(j − 1)



 (3.5)

The total amount of uncertainty of a possibility distribution is given by

their sum. This means that the principle of uncertainty conservation states

that H(p) = N(π)+D(π).
It is conjectured that there is only one such uncertainty conservation

transformation from probability theory to possibility theory that exists for

all distributions and is unique. In [116] it is defined by

πi =
(

pi

pmax

)α

(3.6)

with pmax the highest probability. The positive constant α is determined
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by minimizing the difference between H and N +D and lies in the interval

[0,1].

To obtain the inclusive interpretation for the linguistic terms, the non-

inclusive possibility degrees can be summed –as if the cumulative distri-

bution is calculated– and normalized in the possibilistic sense.

After discretization into the 11 intervals

[0,0.5[, [0.5,1.5[, [1.5,2.5[, . . . , [9.5,10] (3.7)

the optimal α values for all English and Dutch annoyance terms are sum-

marized in table 3.2. The membership functions for the five English terms

that are produced with this method are shown in figure 3.2. To test the im-

pact of discretization on the resulting curves, for the English terms another

discretization scheme into 20 intervals

[0,0.5[, [0.5,1[, [1,1.5[, . . . , [9.5,10] (3.8)

has also been investigated. The optimal α values are shown in table 3.2

and do not differ much. The same can be said about the non-inclusive

representations that are depicted in figure 3.4, however, there are slightly

more fluctuations in the tails. This is natural as the noise in the data is

reduced to a lesser extent.

Table 3.2: Optimal α values for annoyance terms, in English (E) with dis-

cretization into 11 and 20 points and in Dutch (D) with discretization into

11 points.

Term E-11 E-20 D-11 Term E-11 E-20 D-11

L01 0.63 0.63 0.50 L12 0.39 0.33 0.52

L02 0.48 0.39 0.59 L13 0.41 0.33 0.42

L03 0.51 0.50 0.43 L14 0.44 0.40 0.48

L04 0.45 0.48 0.44 L15 0.41 0.43 0.50

L05 0.42 0.39 0.39 L16 0.42 0.39 0.48

L06 0.46 0.46 0.43 L17 0.51 0.52 0.53

L07 0.47 0.42 0.46 L18 0.47 0.45 0.44

L08 0.43 0.45 0.36 L19 0.49 0.35 0.38

L09 0.43 0.43 0.37 L20 0.46 0.36 0.45

L10 0.37 0.35 0.39 L21 0.46 0.40 0.56

L11 0.47 0.43 0.41
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Figure 3.2: Representation of the meaning of five annoyance terms (not at

all, slightly, moderately, very, extremely) when the uncertainty conserva-

tion transformation is applied (left: non-inclusive, right: inclusive)

Finally, there is also the probabilistic difference frequency transforma-

tion (or bijective transformation), which has been defined by Dubois and

Prade [59]. This mapping is based on the following three principles.

• Possibility/probability consistency , (∀A ∈ P(U))(P(A) ≤ Π(A)).
• The basic feature of a possibility distribution is the preference or-

dering that it induces on U . It seems natural to require it to be in

accordance with the probability distribution. This is the preference

preservation principle,

(∀u,u′ ∈ U)(π(u) > π(u′)a p(u) > p(u′)) . (3.9)

• The possibility distribution, which is by definition weaker than a prob-

ability distribution, should be maximally specific so that the least

amount of information gets lost.

Let us first order the probabilities such that p1 ≥ p2 ≥ . . . ≥ pn. A pos-

sible probabilistic difference transformation satisfying the above principles

is defined as

πi = ipi +
n
∑

j=i+1

pj =
n
∑

j=1

min(pi, pj) . (3.10)

Remark that the righthand side of formula (3.10) does not require the re-

ordering of the probabilities. An inverse transformation can be defined as

pi =
n
∑

j=1

πj −πj+1

j
(3.11)
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with the convention that πn+1 = 0. Note that formula (3.10) is in fact

not the most specific transformation [59]. However, the maximally specific

conversion has the property that equal probabilities do not transform into

equal possibilities. Therefore, the given transformation was preferred here.

The results of this method on the five annoyance terms are shown in

figure 3.3, again after applying the discretization into 11 intervals. For

the inclusive interpretation the same procedure as for the uncertainty con-

servation transformation has been used. Also in this case, the influence

of a different discretization scheme has been tested using the same 20

points discretization as defined before. The results shown in figure 3.4

indicate that this transformation is even more “insensitive” to noise than

the method proposed by Klir.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 3.3: Representation of the meaning of five annoyance terms (not at

all, slightly, moderately, very, extremely) when the probabilistic difference

transformation is applied (left: non-inclusive, right: inclusive)

3.3 Fuzzification methods

3.3.1 Basic procedure

Contrary to the probabilistic methods which are based on theoretical princi-

ples, the fuzzification methods have a much more pragmatic starting point.

The general underlying idea is that the mark hkj placed by a respondent k

for a term Lj , j ∈ {1,2, . . . ,5}, can be considered as a value with some un-

certainty. This uncertainty comes from two facts. First of all, when filling

in the survey, people will not have had the intention of marking the posi-

tion 7.1. They may have had the intention of marking “about” 7, so it might

have been 6.8 or 7.2 as well. Secondly, the respondents will not have used
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Figure 3.4: Comparison of discretization into 11 or 20 intervals for the

five annoyance terms (not at all, slightly, moderately, very, extremely) (left:

uncertainty conservation method, right: probabilistic difference method)

any measuring rule. Instead they have judged the line visually and have

marked the position “somewhere” around their intended spot. Hence, it is

justified to draw a membership function around the mark hkj of each indi-

vidual respondent to indicate the region where the mark could have been

placed. The membership degree will decrease if that point seems “less

compatible” with the given point hkj . If one wishes to obtain a representa-

tion for the non-inclusive interpretation of Lj , any bell-shaped membership

function will suit the purpose. For the inclusive interpretation, it is reason-

able to assume that, by placing a mark hkj , j ∈ {2, . . . ,5}, the respondent

indicated that all levels greater than that mark are surely “at least” Lj (Lj
to degree 1). Hence, the only uncertainty is situated left from the mark hkj ,

so a sigmoidal membership function should be used. In case of the term

L1, the uncertainty is situated only on the right side of hk1, therefore an

inverted sigmoidal shape is appropriate.

After having constructed these individual fuzzy sets for a linguistic

term Lj for all respondents, they are numerically added and normalized. Fi-

nally, a smooth membership function can be fitted to the resulting curve to

remove noise issues and to produce the final representation for the mean-

ing of term Lj .

The only remaining question is how to choose the membership func-

tion to fuzzify the marks for each individual respondent. In the following

subsections, two methods will be outlined. One method that has been pro-

posed in [36], followed by a new proposal which is better suited for practical

applications.
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3.3.2 Fixed width

To determine an appropriate way to fuzzify a mark hkj , Cleeren [36] sug-

gested to use the standard deviation of all marks for Lj as the standard

deviation of the bell-shaped fuzzy set drawn around hkj (or the sigmoidal

shape in case of the inclusive interpretation). This captures more or less

the consistency in meaning of a linguistic term of one respondent com-

pared to the whole group of respondents. However this approach has a

few serious drawbacks.

• Although this technique uses more information than the probabilistic

methods and the use of the standard deviation is justified by Cleeren,

it cannot be argued that the individual curves really reflect the inten-

tions of the respondents. After all, the relationships between differ-

ent linguistic terms in the vision of each individual respondent are

not used.

• This approach assumes that the standard deviation of 100 times ask-

ing one person for the meaning of a linguistic term is the same as

the standard deviation of asking this question a single time to 100

different persons. Essentially, this would mean that this term has the

same meaning in the mind of all people.

• The fuzzy sets that result from this method tend to overlap each other

a lot, which makes them less suitable for practical purposes.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 3.5: Representation of the meaning of five annoyance terms when

the fuzzification method with fixed width is applied (left: non-inclusive,

right: inclusive)
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3.3.3 Fixed degree of overlap

To alleviate some of the problems mentioned with the previous approach, a

new fuzzification scheme is introduced here. It allows to control the degree

of overlap between two adjacent linguistic terms with a parameter which

will be denoted as α. The amount of uncertainty inherently associated with

a mark hkj , j ∈ {2,3,4}, will be related to the distance to the previous mark

hkj−1 and the next mark hkj+1 placed by the same respondent k. Since there

is no previous mark for hk1, we can only take the distance to the next mark

hk2 into account to construct a curve for L1. Likewise there is no next mark

for hk5, hence we will only use the distance to the previous mark hk4.

The individual curves will be constructed so that the height of the in-

tersection of two succeeding curves Lj and Lj+1 is α. For each respondent

k and for each term Lj , j ∈ {2,3,4}, an individual bell-shaped function

Lj = AgaussE(h
k
j , σ

k
j , δ

k
j ; .) is constructed so that for ∆hkj = (hkj+1 −hkj )/2

Lj
(

hkj +∆hkj
)

= α = Lj+1

(

hkj+1 −∆hkj
)

. (3.12)

The top of the bell for Lj corresponds to the mark hkj placed by the in-

formant, and the width of the flanks is determined by the distance of the

mark hkj to the previous mark hkj−1 and the next mark hkj+1, as well as by

the parameter α ∈ [0,1]. Solving this equation results in the value for δkj
and σkj+1

δkj = σkj+1 =
(

1
√

−2 ln(α)

)

∆
k
j . (3.13)

For the leftmost and the rightmost terms L1 and L5, the functions SE(h
k
1, δ

k
1; .)

and SE(h
k
5, σ

k
5 ; .) are used respectively.

It can be observed that this method leads down to the probabilistic his-

togram method for the limit value 0 of parameterα, where limα→0
1√

−2 ln(α)
=

0, which means that the width of all flanks is 0. Stated otherwise, no flanks

are added at all. Hence only the given crisp points are summed, which is

exactly the same as the histogram approach.

The results of this technique for the five annoyance terms and the pa-

rameter value α = 0.1 are depicted in figure 3.6.

3.4 Comparison

In the previous sections 3.2 and 3.3 two families of construction meth-

ods for fuzzy sets representing the meaning of linguistic terms have been

studied in detail. They have been applied to the five English linguistic terms
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Figure 3.6: Representation of the meaning of five annoyance terms when

the fuzzification method is applied with α = 0.1 (left: non-inclusive, right:

inclusive)

that have been selected by an international study as preferred for the de-

scription of levels of (noise) annoyance. This has resulted in a number

of continuous shapes as well as discrete curves. In general the following

can be concluded. Neither the probabilistic methods nor the fuzzification

method with fixed width do care about the relationship with other terms.

They focus on the meaning of one term independently. Hence, they reflect

the exact meaning of an isolated term as close as possible. They are the

ideal choice from a linguistic point of view. Nothing in particular can be

said about the expected degree of overlap between different fuzzy sets.

However the latter method tends to generate wide, non-specific fuzzy sets,

which make them a bit less usable. Also, the degree of overlap between

fuzzy sets is larger. The fuzzification method with fixed degree of overlap,

allows to control the degree of overlap between adjacent curves. Hence, it

requires a selection of terms before the method can be applied in the first

place. A large number of terms will result in smaller, more specific fuzzy

sets while a small number of terms will result in wider fuzzy sets. It is

guaranteed that the universe will be more or less completely covered de-

pending on the parameter. This makes this procedure less trustworthy to

represent the exact meaning of a term in isolation, but generates fuzzy sets

that are ideally suited for applications that require a reasonable coverage

of the whole universe while still reflecting the meaning and especially the

relationships between the number of chosen terms. As an example of such

applications, fuzzy control and fuzzy rule bases in general can be men-

tioned, which represent a large portion of the applications of fuzzy theory

in use today. A rule of thumb is to allow at least an overlap of membership
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degree 0.25 between adjacent membership functions [28], although this

also depends on the models and choice of operators. This overlap is nec-

essary to ensure adequate actions. For example, what should happen when

there is not a single term that corresponds to a received input signal with

membership degree larger than 0 (e.g. consider h = 4 in figure 3.1). What

rules should be fired? If the whole universe is covered, such a situation

cannot occur.

In the introduction of this chapter, some of the difficulties to use all

data collected in noise annoyance surveys, conducted in several languages,

have been described. The presented methods are able to generate a math-

ematical representation of linguistic terms in several languages, especially

for the nine languages that participated in the International Annoyance

Scaling Study. This means that the data obtained from annoyance surveys

can be uniformly represented as fuzzy sets which eases comparison.

For fuzzy analyzes of the same data set performed by other researchers,

see [150] and [94].

4 Translating annoyance terms

4.1 Overview

It has been shown that the meaning of any linguistic term in any language

can be adequately and uniformly represented as a fuzzy set. This means

that all mathematical tools become available to operate on them. In this

context, an interesting class of operators are the similarity measures. More

specifically, similarity measures can be used to measure the degree of com-

patibility between two fuzzy sets, and as a consequence, the degree of com-

patibility between the two associated linguistic terms. If two terms from

different languages are compared and they turn out to be similar to a high

degree, then they should more or less capture the same meaning. In fact,

they should be potential translations of each other.

An important down to earth remark is in order here. It is recognized that

language is a very complex, multidimensional construct. Therefore, one

can never claim to make a good translation by solely taking the meaning of

words into account as in the case of this application. For instance, cultural

and social differences will impose different frequencies of word usage, an

important aspect that is completely disregarded here. Still, for simplicity,

the words “translation”, “synonyms”,... will be used further.

Using the fuzzy set representations of all linguistic terms in all lan-

guages that participated in the International Annoyance Scaling Study and
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using the above observation, a mathematical translation tool can be envis-

aged. First, the similarity degree between a given term in one language and

all other terms in the database of a target language are calculated. Then,

the terms with a high similarity can be proposed as potential translations

of the first term. In this section, such a tool will be developed and tested.

Of course, the choice of the construction method for the fuzzy set rep-

resentations plays a key role in this application. As the fuzzy sets should

express the linguistic meaning of the terms as closely as possible, the prob-

abilistic methods look most appealing. Also, as there are a large number

of terms in our database, a numerically “easy” method is favored in order

to make automatic fuzzy set construction possible. Therefore, the uncer-

tainty conservation transformation has been used after discretization into

11 intervals. As a further simplification, the parameter α has been fixed to

0.5 for all terms. This simplifies automation a lot and can be empirically

justified by observing that most α-values for the English and Dutch terms

are close to 0.5 (see table 3.2).

Next, the properties of similarity measures are under investigation in

order to find an appropriate measure for our purposes. Afterwards this

similarity measure will be applied to the annoyance terms to mathemati-

cally find the best translations. Of course, the obtained translations will

be verified from a human perspective. If the proposed translations make

sense, it will prove the adequacy of the fuzzy sets that represent the mean-

ing of the linguistic terms and their construction method. Although the

tool can be applied to all languages in the database, here we will limit our-

selves to translations between English and Dutch. For a more detailed ex-

position of the mathematical translation tool and the results for the other

languages, the reader is referred to [20].

4.2 Similarity between fuzzy sets

In chapter 2, section 4, a similarity measure on a universe U has been de-

fined as a [0,1]-valued indicator suitable for the comparison of fuzzy sets

on U , i.e. a binary fuzzy relation on F(U). Depending on the requirements

imposed on the measures, different indicators with varying behavior can

be selected. Intuitively speaking, a good similarity measure should

• Consider coincidence of the maximum of the membership functions.

• Consider the similarity in general shape of the membership functions.

Following Tsiporkova and Zimmermann [151], we make a basic distinction

between measures inspired by set equality, and degrees of compatibility or

overlap.
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Definition 54 (T -equality). A binary fuzzy relation E on F(U) is called a

T -equality if

(i) E(A,B) = 1 a A = B

(ii) E(A,B) = E(B,A)

(iii) T (E(A, B), E(B,C)) ≤ E(A,C)

where T is any t-norm.

In [44] an interesting class of T -equalities is studied in detail. They are

defined by translating the logic relation that states that A and B are equal

when A is a subset of B and at the same time B is a subset of A, into the

equation

ET (A, B) = T
(

inf
u∈U

IRT (A(u), B(u)), inf
u∈U

IRT (B(u),A(u))
)

(3.14)

for any A, B in F(U). T can be any t-norm and IRT is the associated resid-

ual implicator. The choice of t-norm in this expression is guided by per-

formance of the equality measure in the particular application context.

Definition 55 (Degree of compatibility). A reflexive, symmetric binary fuzzy

relation C on F(U) is called a degree of compatibility if it satisfies the con-

dition C(A,B) = 0 a supu∈U min (A(u), B(u)) = 0 for any A, B in F(U).

As degree of compatibility two measures S1 and S2 are considered. They

are defined as

S1(A, B) = supu∈U T (A(u), B(u))
supu∈U S(A(u), B(u))

(3.15)

S2(A, B) =
∑

u∈U T (A(u), B(u))
∑

u∈U S(A(u), B(u))
(3.16)

where T is a t-norm and S a t-conorm. S1 compares peak regions of both

fuzzy sets by assessing the height of their intersection. S2 focuses on an

overall overlap of the membership functions. Common choices for the

t-norm and t-conorm in these compatibility measures are the min/max op-

erators as introduced by Zadeh.

It is clear from the above examples that no single best similarity measure

can be found. Based on the findings of [151], where ways of combining the

best of different worlds into a robust similarity indicator are outlined, we

opted for the following generic hybrid measure (it is noted that several

variations exist on this theme):

SimT (A, B) = T (C1(A, B),S(ET (A, B), C2(A, B))) (3.17)
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where C1 and C2 are degrees of compatibility, ET is a T -equality, T is a

t-norm and S is its dual t-conorm. For our translation tool we will choose

C1 = S1, C2 = S2, and ET = ETW and use the Zadeh operators (min/max)

for T and S [39]. As these choices obviously have an impact on the results,

a detailed comparison of various combinations of operators is obligatory.

This will be deferred until section 4.5.

4.3 Translations based on similarity

Using the theory described above, a mathematical translation table can be

constructed for all combinations of the English and Dutch terms in the

database by simply calculating the similarity between all the membership

functions involved. The result is shown in table 3.3.

A remaining issue is the problem of translating a linguistic term using

this table, e.g. to publish or communicate the results of a noise annoyance

survey to another language. The result of a translation of a particular En-

glish word to Dutch can itself be regarded as a fuzzy set on the universe

of all relevant terms contained in the database (21 in this case), the calcu-

lated similarity being the membership degree. For all practical purposes

one term or at least a small set of terms has to be selected. Several tech-

niques can be used for this selection.

• All terms with similarity above a predefined threshold s0 are good

translations.

• The term with the highest similarity is the translation.

• All terms within a range δ from the highest similarity smax are good

translations.

The first approach looks quite appealing at first sight but it does not al-

ways result in a translation using a limited vocabulary, as is the case for the

noise annoyance modifiers. Lowering s0 does not solve this problem since

this would result in too many translations for other words. The second

approach must be rejected on the basis that it is too sensitive for mea-

surement error in the determination of the membership functions. The

third approach is used to translate the 21 English modifiers into Dutch

(δ = 0.05), results are shown in table 3.4.

The attention of the reader is drawn to some particular features in this

table. It is for example easy to see that terms like “barely annoyed” (L03)

and “hardly annoyed” (L04) are so close in meaning that they translate into

the same terms in Dutch (and also in many of the other languages). For

“moderately annoyed” (L10) the similarities with all Dutch terms are low,
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meaning that a good Dutch fit cannot be found. For all other English terms

exists at least one term with rather high similarity.

A technique often used to check the quality of translation is to trans-

late back into the original language and compare the results. It is indeed

known that linguistic translation is not a symmetric process. The proce-

dure based on fuzzy sets proposed here is also not symmetric although it

takes into account less subtleties than human translation does. Table 3.4

shows fuzzy translation from English into Dutch and back. The final result

being the accumulation of all English terms that can be found as trans-

lations of the Dutch terms in the second column. Typically this process

results in an increase of alternatives, although this is not necessarily the

case (e.g. “strongly”). The number of alternatives finally obtained depends

strongly on the size of the vocabulary that is used. Therefore it is not a good

indicator of the quality of the translation process. It is however important

that the original term is amongst the final list. This is not the case for

“insignificantly”, “moderately”, and “rather”. The exact meaning of these

modifiers (in a fuzzy sense) gets lost when translated into Dutch because

no translation is accurately enough for them in this language. However,

based on this table it can be verified that the proposed translations make

sense from a human perspective. Hence, it can be concluded that the trans-

lation tool performs reasonably good, which illustrates the soundness of

the fuzzy set representation and their construction method.

Table 3.4: Translation from English to Dutch and back (in order of high

similarity) with δ = 0.05.

L English Dutch English

L01 not at all helemaal niet not at all

L02 insignificantly nauwelijks barely

hardly

L03 barely nauwelijks barely

hardly

L04 hardly nauwelijks barely

hardly

L05 a little weinig a little

iets slightly
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Table 3.4 (continued)

L English Dutch English

lichtelijk

L06 slightly lichtelijk slightly

L07 partially enigzins partially

matig somewhat

fairly

L08 somewhat tamelijk somewhat

fairly

L09 fairly tamelijk somewhat

fairly

L10 moderately matig partially

tamelijk somewhat

fairly

L11 rather tamelijk somewhat

fairly

L12 considerably behoorlijk considerably

substantially

importantly

L13 substantially behoorlijk considerably

aanzienlijk substantially

importantly

significantly

L14 importantly behoorlijk considerably

aanzienlijk substantially

veel importantly

significantly

L15 significantly aanzienlijk substantially

veel importantly

significantly

L16 very erg very

L17 highly sterk very

zeer highly
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Table 3.4 (continued)

L English Dutch English

ernstig strongly

L18 strongly zeer strongly

ernstig

L19 severely uitermate severely

tremendously

L20 tremendously ontzettend severely

uitermate tremendously

L21 extremely extreem extremely

Equipped with the translation table, it is tempting to verify the transla-

tions of the five English and Dutch terms that were selected in the Interna-

tional Annoyance Scaling Study. These terms and their similarity degree are

recapitulated in table 3.5. The terms seem to be quite similar and hence

well chosen, except perhaps for “moderately” for which no better Dutch

translation exists in the database.

Table 3.5: Similarity between the selected terms in the scaling study.

English Dutch Similarity

Not at all Helemaal niet 0.93

Slightly Een beetje 0.85

Moderately Tamelijk 0.53

Very Erg 0.82

Extremely Extreem 0.70

4.4 Translation of an ideal fuzzy language

In fuzzy set applications, it is common to prefer a set of membership func-

tions that cover the universe completely and subdivide it in equal portions

forming a fuzzy partition. Such a typical set of five triangular membership

functions is shown in figure 3.7. It can be argued that a language contain-

ing words that can be represented by these membership functions would

be ideal to label a five-point scale, if results of a survey are to be used in

(fuzzy) modeling. The modifiers are not only equidistant on the annoy-

ance scale, but also have the same degree of vagueness. Most analyzes
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and modeling efforts have assumed that the verbal adjectives are equally

spaced, thus guaranteeing this property as much as possible is essential

anyhow. Instead of triangles, one could also opt for trapeziums. However,

this raises the question as how wide the top should be chosen. Therefore,

we will stick to triangles here. The five labels constructed in the ideal lan-

guage can now be translated into the natural languages in the database

using the fuzzy similarity approach. In this process all 21 terms from the

modifier study are considered.
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Figure 3.7: Membership functions for an ideal partition of the annoyance

universe.

Table 3.6 lists the best matches for the English and Dutch languages,

again taking into account a margin of δ = 0.05. Terms corresponding to the

five-point scale labels considered in the International Annoyance Scaling

Study are shown in bold. Although the results for the other languages are

not given in this work, they will be discussed very briefly. For more details,

the reader is referred to [20].

In most languages, similarity is better for the first and the last label.

The middle label seems hard to translate into Japanese and Dutch within

the available vocabulary. The second label translates somewhat less easy

into Turkish, Japanese, and English. For most languages three to four of

the terms proposed by the ICBEN team [65] are recovered. It is striking that

the first label does not seem to correspond to the proposed label for any of

the languages except Hungarian. Precisely this label was predetermined in

tasks 3 and 4 of the International Annoyance Scaling Study, see section 2!
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Table 3.6: Translations between an ideal fuzzy language with δ = 0.05.

Ideal language English Dutch

Label 1 insignificantly niet

Label 2 slightly iets

partially lichtelijk

een beetje

enigzins

matig

Label 3 moderately matig

tamelijk

behoorlijk

Label 4 very erg

strongly sterk

Label 5 extremely extreem

4.5 Sensitivity analysis

We have seen that the translation tool involves many choices of operators.

The choices that have been made have proven to be very appropriate. How-

ever, a more thoroughly study of the impact of the operators urges itself.

Here, two questions will be investigated. First, we will look at the behav-

ior of the combined similarity measure Sim in function of its constituents.

Secondly, various combinations of operators will be examined with respect

to the produced translations. To keep the discussion focused, we will stick

to S1 and S2 for the compatibility measures C1 and C2 respectively. From

now on, an index indicating the applied t-norm (and its dual t-conorm) is

added, with the convention that S1 = S1,TM and S2 = S2,TM . The combi-

nation of chosen operators in the similarity measures will be denoted as

“ABCD” with A,B,C,D ∈ {M,P,W}, for SimTA , S1,TB , S2,TC and ETD .

As the similarity measure SimT is based on three other measures, it

is interesting to see which measure dominates the result. Table 3.7 lists

the three individual measures and their combined SimTM outcome for the

Dutch term “tamelijk” and five English annoyance modifiers. From this ta-

ble, two points can be observed. For S1,T the t-norm that is used does not

matter as all values are equal. Therefore, the SimTM combinations in the

table only include S1,TM . Furthermore, in most cases the result of SimTM is

dominated by S2,T comparing the overall shape of the fuzzy sets. Where
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S2,T is not dominant, the value in the table is shown in bold. Intuitively

speaking, in general the dominance of S2,T is a good thing for our appli-

cation. The overlap is one of the most important factors when comparing

the meaning of linguistic terms. Note that in other applications with funda-

mentally different membership functions, the combined similarity measure

may behave differently as it has been constructed to apply for a wide range

of applications.

Table 3.7: Dominance of operator in the combined similarity measure

SimTM tested with “tamelijk”.

partially somewhat fairly moderately rather

S1,TM 1 1 0.86 0.82 0.82

S1,TP 1 1 0.86 0.82 0.82

S1,TW 1 1 0.86 0.82 0.82

S2,TM 0.69 0.83 0.85 0.53 0.67

S2,TP 0.53 0.54 0.56 0.40 0.52

S2,TW 0.41 0.43 0.43 0.27 0.43

ETM 0 0 0.18 0 0

ETP 0 0 0.86 0 0.74

ETW 0.34 0.69 0.68 0.33 0.38

MMMM 0.69 0.83 0.85 0.53 0.67

MMMP 0.69 0.83 0.86 0.53 0.74

MMMW 0.69 0.83 0.85 0.53 0.67

MMPM 0.53 0.54 0.56 0.40 0.52

MMPP 0.53 0.54 0.86 0.40 0.74

MMPW 0.53 0.69 0.68 0.40 0.52

MMWM 0.41 0.43 0.43 0.27 0.43

MMWP 0.41 0.43 0.86 0.27 0.74

MMWW 0.41 0.69 0.68 0.33 0.43

A second issue is the impact of the combination of t-norm operators

in SimT on the produced translations. To elaborate on this point, the En-

glish term “very annoyed” was translated into Dutch and back into English

for different combinations of operators using a subset of the vocabulary,

for English { considerably, substantially, importantly, significantly, very,

highly, strongly } and for Dutch { veel, erg, sterk, zeer, ernstig }. The results

are shown in table 3.8. As already mentioned, it is important that the orig-
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inal term “very” is in the list of English back-translations. Additionally, a

system is preferred that does not result in too many alternatives. A system

that gives all terms in the data base as a potential translation is obviously

not desired. But the parameter δ also has an influence on this number

of proposed alternatives. Therefore, δ has been minimized to include at

least “very” in the final list. It turns out that a number of combinations

perform equally well. Yet, a number of combinations must be rejected be-

cause they result in three or more alternatives, or the parameter δmust be

set rather high to include the original term “very”, e.g. “MMWM”, “WMMP”,

“WMPW”,... It is important to observe that the combination ‘MMMW” that

has been applied in our translation tool proves to be a good choice.

5 Uncertainty on linguistic terms

Proponents of type-2 fuzzy set theory argue that it is not possible to assign

a precise membership degree to every point in the universe. Instead, this

membership assignment is uncertain itself and hence should be modeled

by a secondary membership function. This leads to the notion of a type-2

fuzzy set. A type-2 fuzzy set allows to express the uncertainty over the

vagueness of a linguistic term that we have modeled in previous sections.

An important characteristic of a type-2 fuzzy set is that it reduces to a

(type-1) fuzzy set if its secondary membership functions reduce to a crisp

number (fuzzy sets with membership degree 1 in one point of its universe).

This is very natural as there is no longer uncertainty over the primary

membership value in this case. It merely states the sample principle that

a (type-1) fuzzy set reduces to a crisp number when there is no longer

vagueness.

In his book [117] Mendel gives a complete overview of type-2 fuzzy set

theory and some applications. He also considers the problem of construct-

ing a (type-2) representation of a set of linguistic terms. Therefore, he has

conducted a small scale survey in which 87 engineering students partici-

pated. In total 16 terms have been under investigation: “none”, “some”, “a

good amount”, “an extreme amount”, “a substantial amount”, “a maximum

amount”, “a fair amount”, “a moderate amount”, “a large amount”, “a small

amount”, “very little”, “a lot”, “a sizeable amount”, “a bit”, “a considerable

amount” and “a little bit”. The question that has been asked to the students

was:

“Below are a number of labels that describe an interval or a

“range” that falls somewhere between 0 to 10. For each label,

please tell us where this range would start and where it would
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stop. (In other words, please tell us how much of the distance

from 0 to 10 this range would cover.) For example, the range

“quite a bit” might start at 6 and end at 8. It is important to

note that not all the ranges are the same size.”

Each participant received a form on which the terms were listed in random

order, followed by two columns that had to be filled in. The first column

was meant for the start of the range and the second column was meant for

the end of the range. Both columns had to be filled in with numbers in the

interval [0,10]. In total, 70 valid surveys were completed.

Although this experiment shows many similarities with the survey from

the International Annoyance Scaling Study, there are also important differ-

ences.

• Mendel explicitly asks for a range instead of a single number.

• Participants have to write an exact number instead of placing a mark

on a visual line. Even though a bit more precise, this may be assumed

to be a more difficult exercise.

• The context of the terms differs, “an amount” instead of a “degree of

annoyance”.

• Finally, the set of terms is not equal, not in number (16 versus 21)

and not in selection.

Nevertheless, it is interesting to compare the results for the modifiers that

have appeared in both surveys, see table 3.9. In this table, the average start

point and end point of the range of Mendel, has been averaged into a sin-

gle number µ for easy comparison with the results from the international

study. The same averaging process has also been done for the standard

deviations. It is striking that the order of the terms is the same, except

for “fair” and “moderate” which are very close anyway. Also note that the

standard deviations are pretty much the same. This seems to indicate that

the terms have an inherent equal amount of doubt across people, even in

different contexts. Furthermore, the value for “extreme” is lower, proba-

bly because Mendel included an even stronger term ”a maximum amount”.

Contrary to the International Annoyance Scaling Study where ”extremely

annoyed” was the highest amount of annoyance. Based on his survey,

Mendel also selected five terms to cover the whole universe, just as has

been done in the international survey. His selection was “none to very

little”, “some”, “a moderate amount”, “a large amount” and “a maximum

amount”. As his first label, Mendel combined the terms “none” and “very

little” because there was a gap between them. He also observed that:
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“People seem to agree that “none” starts at zero–and there is

very little uncertainty about this. To people, the word “none”

seems to have a very strong connotation with the number “zero”.”

More or less the same has been observed for “not at all annoyed” interna-

tionally.

The theory of type-2 fuzzy sets is quite general, in the sense that it al-

lows any shape for the secondary membership functions. However, calcu-

lations can soon become very complex and unfeasible for all practical pur-

poses. Therefore, so called interval type-2 fuzzy sets are often used. These

are type-2 fuzzy sets in which the secondary membership functions are all

intervals over the domain of primary membership values. This choice sim-

plifies all involved calculations a lot. A common graphical representation

of interval type-2 fuzzy sets with triangular primary membership func-

tions is depicted in figure 3.8(a). The shaded area shows the footprint of

uncertainty (FOU), it is the union of all primary values where the secondary

membership value is greater than 0. The uniformly shading indicates that

it concerns an interval type-2 fuzzy set where all secondary membership

values are equal to 1. The upper bound of the FOU is called the upper

membership function, the lower bound of the FOU is analogically called the

lower membership function.

Using the results of his survey, Mendel outlines a method to construct

interval type-2 fuzzy sets with triangular primary membership functions.

Here, we will apply the same method for our database and our five English

annoyance terms. However, whereas Mendel uses his range start and end

points [a, b], we will use µ for both points and its associated standard

deviation σ (see table 3.9) instead of σa and σb. The type-2 fuzzy sets

will be denoted as L̃j for j ∈ {1,2, . . . ,5}, with upper membership func-

tion FOU
(

L̃j
)

and lower membership function FOU
(

L̃j
)

. The construction

process can then be described as followed, with parameter ρ ∈ [0,1].
• For the terms j ∈ {2,3,4},

FOU
(

L̃j
)

= Tri (µ − (1+ ρ)σ,µ, µ + (1+ ρ)σ) (3.18)

FOU
(

L̃j
)

= Tri (µ − (1− ρ)σ,µ, µ + (1− ρ)σ) (3.19)

• For the left most term L̃1,

FOU
(

L̃1

)

= Lin (µ + ρσ,µ + (1+ ρ)σ) (3.20)

FOU
(

L̃1

)

= Lin (µ − ρσ,µ + (1− ρ)σ) (3.21)
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• For the right most term L̃5,

FOU
(

L̃5

)

= Lin (µ − (1+ ρ)σ,µ − ρσ) (3.22)

FOU
(

L̃5

)

= Lin (µ − (1− ρ)σ,µ + ρσ) (3.23)

The parameter ρ expresses the fraction of uncertainty. Resulting interval

type-2 fuzzy sets for ρ = 0.5 are shown in figure 3.8. When this fraction

of uncertainty reduces to zero, type-1 fuzzy sets are obtained, also shown

in the same figure. Observe that this method suffers from the same disad-

vantage as the probabilistic methods, there is no intrinsic way to control

the degree of overlap between fuzzy sets.
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Figure 3.8: (a) Type-2 fuzzy sets for the representation of the five English

annoyance terms (ρ = 0.5), (b) same construction for ρ = 0 reduces to

type-1 fuzzy sets (black lines).

Finally, a closer look is taken at the membership construction process as

outlined by Mendel and the one adapted for our purposes. In figure 3.9, the

results of both procedures for two linguistic terms are compared. Clearly,

the Mendel curves can be asymmetrical because they have different stan-

dard deviations for the left and right point of the range. They determine

both the position and the width of the side of the triangles. This seems

advantageous as in general the standard deviation is smaller on the side

that is closest to an end point of the interval [0,10]. Unfortunately, this

kind of data was not available in the annoyance study. Yet, it is surprising

that Mendel chooses triangular primary membership functions to model

this kind of data, whereas a trapezoidal shape would be expected to reflect

his separate range end points a and b.
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Figure 3.9: Comparison between the curves for two linguistic terms from

Mendel (dark) and the annoyance study (light) for ρ = 0.5 (left: “a little

bit”/“a little”, right: “moderate”/“moderately”)

Although type-2 fuzzy set theory provides a fresh and interesting look

at the different kinds of uncertainties involved in linguistic modeling, this

topic will not be pursued any further in this work for the following reasons.

• Far better methods exist for constructing fuzzy set representations

of linguistic terms than the inquiry-driven approaches, in which ex-

perts directly assign a membership degree to each point in the uni-

verse (which is obviously rather uncertain). Other methods already

take into account an average amount of uncertainty on the provided

membership degrees. Just as in the case of type-2 fuzzy sets this is

done based on the standard deviation.

• Computations with general type-2 fuzzy sets is numerically very in-

tensive. Hence, practical applications rely almost completely on inter-

val type-2 fuzzy sets. This makes calculations much more feasible,

but seriously reduces the expressive power of the uncertainties in-

volved in the type-2 fuzzy sets. Even then, the required calculations

are an order of magnitude higher.

The representation of noise annoyance as a linguistic variable will help

to overcome the comparison problems that have been described in the be-

ginning of this section. This will allow to construct language neutral models

that make use of all available data. Not only data to be collected in future

surveys with the recently proposed and internationally accepted annoyance

scale, based on the annoyance scaling study, but also the data collected in

all past surveys. How such language neutral noise annoyance models can

be developed will be explained in subsequent chapters.



84 REPRESENTING NOISE ANNOYANCE

Table 3.8: Sensitivity analysis of SimT for various combinations of opera-

tors with back-translation from “very annoyed”.

t-Norms δ Dutch English

MMMM 0 erg very

MMMP 0 erg very

MMMW 0 erg very

MMPM 0.03 erg, sterk, ernstig very, highly, strongly

MMPP 0 sterk very

MMPW 0 erg very

MMWM 0.07 erg, sterk, zeer, ernstig very, highly, strongly

MMWP 0 sterk very

MMWW 0 erg very

PMMM 0 erg very

PMMP 0.02 erg significantly, very

PMMW 0 erg very

PMPM 0.05 erg, sterk, ernstig substantially, significantly,

very, highly, strongly

PMPP 0 sterk very

PMPW 0 erg very

PMWM 0.07 erg, sterk, zeer, ernstig very, highly, strongly

PMWP 0 sterk very

PMWW 0 erg very

WMMM 0 erg very

WMMP 0.03 erg considerably, significantly,

very

WMMW 0 sterk, zeer very, highly, strongly

WMPM 0.06 sterk, zeer, ernstig very, highly, strongly

WMPP 0 sterk very

WMPW 0 sterk, zeer very, highly, strongly

WMWM 0.08 erg, sterk, zeer, ernstig substantially, importantly,

significantly, very,

highly, strongly

WMWP 0 sterk very

WMWW 0 sterk very
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Table 3.9: Comparison between the results from the Mendel survey and

the international annoyance survey.

Label Mendel Annoyance

µ σ µ σ

none (not at all) 0.19 0.51 0.08 0.50

a little bit (a little) 2.19 1.23 1.32 0.81

some (somewhat) 3.06 1.45 3.57 1.53

fair (fairly) 5.24 1.32 4.05 1.49

moderate (moderately) 5.16 1.16 4.37 1.09

considerable (considerably) 6.67 1.58 6.22 1.70

substantial (substantially) 7.45 1.56 6.45 1.53

extreme (extremely) 8.74 1.44 9.49 0.87





Chapter4

Modeling noise annoyance

It is through science that we prove,

but through intuition that we discover.

Henri Poincaré (1854-1912)

French mathematician

1 Current state of the art

The history of modern community noise annoyance modeling started in

1978, when Schultz re-analyzed the English language data from several so-

cial surveys on the noise of airway, railway and road traffic [140]. He plotted

the reported annoyance levels in function of the sound exposure (Ldn) and

calculated the percentage of people that were “highly annoyed” (%HA) for

each dose. For 11 surveys which became known as the clustering surveys,

these curves showed a remarkable consistency. Hence, the average of these

curves was proposed as the best estimate to predict community noise an-

noyance from transportation noise sources. In his meta-analysis, Schultz

used a third order polynomial to fit the 161 data points in his clustering

surveys. This publication of the so called dose-response relationships, was

criticized by several authors and led to a public debate [98] [141] [99] [64].

Some of the comments that were made concerned the selection process of

studies, the definition of the percentage highly annoyed (as the percentage

above a crisp cutoff point of 7.2 on 10), the assignment of equal weights

to data points that represent different numbers of cases,... Notwithstand-

ing this debate, authors continued to include more surveys in the synthe-

sis process and refined the meta-analysis methodology in order to resolve

most of the criticism, resulting in updated curves. More recently, Miedema

& Vos have compiled the largest database so far (from 45 surveys). In

87
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their meta-analysis, they acknowledge three different dose-response re-

lationships, one for airway, railway and road traffic, and assume a lin-

ear relationship with normal distributed random component between the

measured noise exposure and the experienced degree of annoyance [123].

Based on the same data set, these curves have been updated by Miedema

& Oudshoorn in [122], see figure 4.1.
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Figure 4.1: Dose-response relationships of Miedema & Oudshoorn [122]

where the percentage of “highly annoyed” people is plotted against DNL

for airway (dotted), road (solid) and railway (dashed) traffic.

Although widely accepted, these kinds of dose-response relationships

assume the following important restrictions [100].

Non-acoustic factors are averaged out People with different basic psycho-

logical and physiological sensitivities to stimulation, and with differ-

ent emotion-arousing associations to specific noise sources, are ran-

domly distributed among neighborhoods.

Ldn is a good exposure descriptor The amount of annoyance will depend

on the activity of an individual when a noise event occurs and on the

intensity and duration of the event. Furthermore, averaged over large

groups, the degree of annoyance experienced in a given Ldn noise area

will be about the same.

No recent changes and newcomers A majority of people in a given neigh-

borhood has been exposed for months and years to the noises, so

that knowledge of the sources, the psychological effects of unexpect-

edness, and within limits startle are considered to be non-dominant

variables.
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Moreover, this meta-analysis approach is only suitable for modeling the

annoyance impact on large groups or neighborhoods: the community re-

sponse to noise. Because of these restrictions, simple dose-response rela-

tionships can not actually claim to model the real life experience of degrees

of annoyance. They are merely suited as an annoyance indicator that can

be used for basic administrative information and comparison across Euro-

pean countries [111]. For such purposes, their simplicity is an advantage.

Even in the early days, researchers recognized that not only noise ex-

posure variables affect the way people experience annoyance. Using the

same kind of meta-analysis, several contextual variables such as attitude

to the noise source, sensitivity to noise, social status, dwelling type,... have

been examined in order to explain the variance of the dose-response rela-

tionships [89] [63] [78] [96]. Later, Miedema & Vos tried to quantify the im-

pact of demographic and attitudinal factors by calculating the extra noise

annoyance in Ldn equivalents [124]. However, these meta-analysis based

approaches can only give a clue on the significance of variables. It is very

difficult to really discover the underlying relationships in a way which is

easy to comprehend.

Nevertheless, this direction of research has led to the introduction of the

term soundscape in noise annoyance modeling. The soundscape concept

as originally coined by Schafer back in 1978 [137], refers to the interac-

tion between people and sound, the way people are consciously perceiving

music when listening. In the field of annoyance modeling, authors have

defined the soundscape concept as the acoustical as well as other sensory,

aesthetic, geographic, social, psychological and cultural stimuli in the con-

text of human activity across space, time and society. Soundscape assess-

ment is essential for a more complete, holistic modeling of annoyance. It is

required for more complex tasks such as environmental health impact as-

sessment and the design and planning of sustainable environments which

are supportive to health [111]. Remark that there is in fact no universally

accepted definition of the meaning of the term soundscape. Some authors

use it in a much more narrow interpretation to denote exclusively the acous-

tical part of this holistic picture. They introduced analogous terms to refer

to the other contextual variables, e.g. the “enviroscape” for non-acoustical

features of the physical environment and “psychscape” for person related

factors [92].

It is currently believed that noise exposure alone can only explain about

30 % of noise annoyance in the sense of statistical explained variance [144].

In this context, an interesting experiment was setup by Schomer [138] to in-

vestigate the relationship between noise noticeability and noise annoyance.

Clusters of subjects were chosen at three different locations. An outdoor
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sound monitor was used to measure the noise exposure (in A-weighted

decibels) of single “events” and record the times at which they occurred. A

noise event was defined as a 20-seconds sound exceeding a certain thresh-

old noise level. The subjects carried a palm-top computer on their body or

kept it nearby. They were instructed to fill in a short questionnaire on the

palm-top every time they noticed an outdoor sound with a noise character

and level sufficient to motivate them to respond. They also had to indi-

cate on the computer when they left the house or returned. Using all day-

time (7h till 22h) collected data, subject responses were correlated with the

largest qualifying noise event that occurred within two minutes prior to the

subject’s response. Only occasionally, subjects responded to noise events

that were not recorded by the sound monitor. Two variables have been

analyzed in function of noise exposure, the rate of response (the number

of responses divided by the total number of measured noise events dur-

ing the time when the subject was home) and the reported annoyance per

event. The results revealed that the largest group (15 subjects) responded

by varying their rate of response as a function of noise exposure and main-

taining a constant annoyance judgement which was independent of the

sound level. A smaller set of subjects (8) varied their annoyance per event

response as a function of noise exposure but kept their rate of response

constant. A similar sized group of subjects (8) had responses which were

entirely independent of the noise exposure. The smallest group (5) varied

both variables as functions of the sound level. These results support the

hypothesis that to a large extent noise is only the trigger for annoyance.

The actual degree of annoyance is mainly determined by personal traits,

which act as pre-conditioners or modifiers on the perceived noise.

2 Noise annoyance advisor

In this work, the goal is to build a system that is capable of judging the im-

pact of noise on an individual person. The complete picture of the system

that will be constructed is shown as an Unified Modeling Language (UML)

component diagram in figure 4.2. UML is a graphical language for visualiz-

ing, specifying, constructing, and documenting the artifacts of a (software-

intensive) system [5] and was accepted as a standard by the OMG (Object

Management Group) in 1997. Artifacts include models, source files,... UML

is widely used in the object oriented (OO) software engineering community,

but also system engineers are adopting this modeling language. On the di-

agram, three separate layers of the system can be identified (the dashed

arrows indicate a “dependency relationship”, where the source of the ar-
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conceptual annoyance model

Acoustical, attitudinal, emotional, behavioral,
 personal, environmental, temporal, cultural

Annoyance

input output

* *

«instance»

«use» «result»

«instance»«instance»

Noise Annoyance Advisor

Figure 4.2: UML component model for a noise annoyance system.

row depends on the target of the arrow).

The upper layer consists of a conceptual annoyance model . It describes

the various factors that are important in the context of noise annoyance

(acoustical, contextual, attitudinal, personal, temporal,...), and how they

relate to each other and noise annoyance of an individual in particular (see

section 2.1 for more details). Utilizing the UML terminology further, the

conceptual model contains the relevant classes (factors) and their asso-

ciations, which define semantic relationships between the classes, in the

modeling domain.

In the middle layer, the noise annoyance advisor is found. The an-

noyance advisor instantiates the conceptual model and provides the nec-

essary machinery to use this instantiation when input data is available.

When an association between two classes from the conceptual model, e.g.

“noise exposure”—“annoyance”, is instantiated, it results in a number of

links. Each link describes a concrete relationship between two objects or

instances of the classes, e.g. “high noise exposure”—“very annoyed”. Be-

cause of the vague and uncertain domain, and to continue working in the

fuzzy framework in which the annoyance concept has succesfully been rep-

resented in chapter 3, the noise annoyance advisor will use fuzzy IF-THEN

rules to represent these links. This allows experts to express their knowl-

edge in a linguistical way, which in turn makes the system easy to compre-

hend. A collection of fuzzy rules, which describe the interactions between

variables in a linguistic way, is known as a fuzzy rule base (FRB). The other
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parts of this layer are responsible for inferring an annoyance expression by

using these fuzzy rules. For this layer, the name “noise annoyance advisor”

has been chosen because it helps policy makers and managers to predict

the level of annoyance that people will experience. It can also be seen as

a software agent that mimics human perception of the soundscape stimuli

and makes the decision for reporting noise annoyance. A software agent

is a piece of software that assists an individual to accomplish a task (e.g.

reading news facts) according to his own personal profile, customs and

preferences (e.g. specifically interested in financially related events).

In fact the description given above can be interpreted as using a fuzzy

extension to the UML, where the classes and objects represent fuzzy en-

tities with fuzzy associations. Among the different kinds of associations

there should be one with IF-THEN semantics. Although the integration of a

formal fuzzy and object oriented data model has been and is still actively

studied from a database [14], as well as from a software perspective [106]

(see [105] for a survey), a standardized fuzzy extension to UML has not yet

been published. However, this topic is beyond the scope of this work.

A third and final layer depicts the operationalization of the system by

a user. He feeds the noise annoyance advisor with objects that instantiate

the input classes from the conceptual model and retrieves an object that

expresses a degree of annoyance in some way. Missing information should

pose no problems, except for a possible less precise and certain result.

Please note that we are modeling here what Zadeh calls a “humanistic

system”, a system whose behavior is strongly influenced by human judge-

ment, perception or emotions, e.g. economic systems, political systems,

legal systems and educational systems. A single human and his thought

processes may also be viewed as a humanistic system. Contrary to mech-

anistic systems, the humanistic systems are not governed by the laws of

mechanics, physics, chemistry and electromagnetism [188]. Hence, the un-

derlying knowledge is much harder to find and to formulate.

In subsequent sections, the components of the system will be described

and analyzed in more detail. We will start by taking a look at the concep-

tual annoyance model in order to expose the requirements of the noise

annoyance advisor to be implemented.

2.1 Conceptual annoyance model

In [25] we have studied the available literature for factors that have been

found or have been assumed to influence the noise annoyance construction

process. These factors and their association paths to annoyance have been

summarized in the conceptual annoyance model that is shown in figure 4.3.



Noise annoyance advisor 93

Clear forward paths as well as adaptation (internal and external) are shown

in full lines, while paths that are considered more hypothetical and could

ultimately turn out to follow a completely different route are marked in

dashed lines.

Note that this figure is not yet drawn as an UML static class diagram

because it still has to be refined to allow the actual formulation of rules. A

thorough discussion and refinement of this conceptual annoyance model

and results obtained with a concrete noise annoyance advisor instance

tested on a sample data set is deferred to chapter 6. Here, the model is

only important to identify what sort of relations we will have to deal with

in the noise annoyance advisor . Therefore, we will confine to a brief de-

scription of these fundamental concepts and the complexities of this real

world model.

built environment,

land use

topography, nature,

climate, seasons

appearance,

place attachment

non-noise

exposure

noise

exposure
source

habits,

life style

context

elasticity

health
coping,

adaptability

situation,

housing

annoyance

attitudes,

sensitivity

Figure 4.3: Conceptual annoyance model. Clear forward paths are in full

lines, more hypothetical paths are in dashed lines.

Source The source that emits the noise, and possibly other pollution fac-

tors such as odor and fumes, triggers the whole process.

Situation and housing The size of the household, the number of children
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running and playing in the house, the facing of the bedroom and living

room windows towards a quiet side (e.g. backyard) or directed to the

noise source,... are important determinants for our housing situation

in relation with noise annoyance [29] [103]. This factor is concerned

with everything inside the house.

Topography, nature, climate and seasons The general setting of the en-

vironment in a broader context, e.g. a mountainous landscape, the

presence of lakes,...

Built environment and land use This describes the way in which the area

is built up in a much more local sense, the percentage of buildings and

green area, open-space or closed-space development, on the country

side or in a city center,...

The built environment is influenced by the topography as certain

types of topography will not allow certain built types (e.g. closed-

space development on a mountain side).

Noise exposure Groups all the physical characteristics of the noise and the

background noise at home. Data from social surveys usually includes

only a very limited description of the noise exposure. Commonly, only

the calculated A-weighted DNL or DENL is available, although other

measures such as peak levels and time distributions would also be

very useful.

Obviously, the noise exposure has a direct impact on the experienced

noise annoyance [144].

It has been found that the source of the noise exposure significantly

influences the annoyance response [62] [123]. For transportation

noises, airway traffic noise triggers the strongest response, while rail-

way traffic has a more modest impact. Road traffic falls somewhere

in between [120]. Streetcar noise appears to be equally annoying as

road noise [100]. In this work, focus is mainly on road and railway

noise, which have a long modeling history and a large amount of col-

lected data, contrary to other sources such as noise from industry.

Two possible approaches to deal with this source dependency should

be mentioned. The first one varies the links from noise exposure

to annoyance (represented by fuzzy rules) depending on the source.

Another approach tries to derive the source and hence the impact

on annoyance based on a detailed noise exposure description. E.g.

railway traffic will have a different time distribution and peak level

than road and airway traffic. However, because such detailed noise

exposure characteristics are usually not available, the first approach
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is implemented in this work. Another important aspect that modifies

the noise exposure is the distance to the source.

In an open topography and especially in an open built environment,

noise exposure will propagate more easily, increasing noise exposure,

than shielded by natural barriers (e.g. mountains and trees) and other

barriers (buildings).

The orientation of the house, living room and bedroom windows faced

towards the noise source, is also an important factor in the determi-

nation of noise exposure [63].

Finally, the noise exposure is influenced by the way people cope with

the noise (e.g. closing windows).

Non-noise exposure Of course, noise is not the only pollution factor in

our environment, others include odor and light pollution.

Fields [63] has found that the presence of other (non-noise) pollutants

can enforce the degree of experienced noise annoyance.

Of course, non-noise exposure also originates from a source. Often,

this will be the same source that is responsible for the noise exposure,

e.g. traffic also emits exhaust fumes (odor).

As in the case of the noise exposure, an open topography and an open

built environment will increase the propagation of other pollution

factors.

Appearance and place attachment Factors that determine the visual es-

thetics of the environment and the type of house (detached house,

semidetached house, terrace house or apartment). This factor groups

everything that is related with the outside of the house.

It has been shown in laboratory that non-human sounds (bird songs

as well as traffic noise) are all rated more annoying when heard in

a less visual appealing setting (varied from woods, detached house

to apartment blocks) [168]. This is not true for human sounds (foot-

steps, whispering). A possible explanation is that human sounds draw

more attention to the auditory stimuli because people can imagine

themselves participating to the noise. The fact that the negative ef-

fect on traffic noise is equally strong, raises the hypothesis that the

expectation of traffic noise in apartment blocks is less important.

There also seems a weak link from annoyance to the visual appearance

as the setting is rated less appealing when the sound heard is not

expected in that visual environment [168].
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The possibilities for the appearance of a house are of course related

to the topography and the built environment.

Habits and lifestyle The social context, having a demanding and stressful

job,...

Miedema & Vos [124] have found a small influence of the level of

education on noise annoyance. People with a higher education report

a higher degree of annoyance. Higher education might indicate a more

stressful job. However, they have also found a less important effect

of occupational status but this could be attributed to the poor quality

of their occupational status data.

It is clear that the outside environment (topography, land use and

house appearance) will determine our life style (living on the coun-

tryside compared to the habits in a city center).

Furthermore, our life style is also influenced by our attitudes and

sensitivity. Sensitive people are more likely to be stressed.

Attitudes and sensitivity Our general attitude towards a source depends

on several factors, such as our view on the importance of a source

(e.g. for the economy), if we make use of it ourselves (e.g. frequent

air flyer), fear (e.g. for a plane crash),... Also our general sensitivity

to noise has been found to be significantly linked to noise annoy-

ance [107] [130] [129].

Our attitudes can influence annoyance [89] [63] [124], and also there

is a possibility that our attitudes and especially our sensitivity are

influenced by annoyance [89].

Our attitudes towards the exposure are of course directly depending

on its source, e.g. aircrafts. Also, besides general noise sensitivity

there seems to exist noise-specific sensitivity [91].

A stressful life, bad health,... can make us more sensitive.

Attitudes and sensitivity may also depend on the noise exposure.

Coping and adaptability Coping refers to the way in which we deal with

the annoyance we experience, such as the closing of windows (active

coping), feeling helpless (emotional coping), filing a complaint (politi-

cal coping),... Migration from noisy areas or avoidance of moving into

noisy areas are examples of (external) adaptation.

Coping behavior is triggered by noise exposure and modifies our de-

gree of annoyance. However, it can also legitimately be seen from the

other viewpoint, coping is triggered from annoyance and modifies the

noise to which we are exposed [154] [110] [108].
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Different forms of coping require a certain attitude, e.g. assertivity is

required to file a complaint.

Health Describes the medical state, e.g. chronic diseases.

As explained in the introduction chapter, annoyance is seen as an in-

termediate variable between noise and other health effects. However,

there will also be an influence in the opposite direction as ill people

will perceive noises differently.

Furthermore, our health can be influenced by our habits (e.g. smok-

ing), general life style and also our sensitivity and attitudes (e.g. atti-

tudes that provoke emotional coping can also lead to depressions).

Context elasticity Expresses to what degree people are happy with the at-

tractiveness and safety of the neighborhood, the available leisure fa-

cilities, the quality of their environment and their general quality of

life,...

In general, a good living environment and quality of life makes people

more tolerant for noise.

A closer look at the relationships reveals three complicating issues.

• The multitude of factors arouses suspicion that there will be paths

that counteract with each other. As an example consider an open

built environment (open-spaced development). This will increase the

noise exposure and non-noise exposure (such as odor pollution) and

thus the level of annoyance. However, it also indicates a more rural

(land use) area with a pleasant appearance, where people are in gen-

eral happy with their living environment (context elasticity). Hence,

they are more tolerant for noise which has a positive effect on the an-

noyance. So the noise annoyance advisor will likely have to deal with

conflicting rules. Additionally, in investigating the relationships be-

tween variables one should be very cautious and try to address each

factor separately before drawing conclusions.

• Another problem that appears in the model is the occurrences of cy-

cles, e.g. coping. One will only close a window due to a certain degree

of annoyance, however, because of that the annoyance will decrease.

A possible approach consists of multiple loops through the annoy-

ance model, using the outcome of the previous loop as input for such

variables, until a stable outcome is obtained.

• Many of the identified relationships are still not firmly known and

rather hypothetical. Therefore, the noise annoyance advisor should
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be capable of including hypothetical rules and provide a mechanism

to test whether such hypotheses hold or should be rejected.

Constructing a completely determined noise annoyance model would

require to model each described factor into full detail. As a human is a

complex system of traits and inner states which is influenced by many in-

puts from the past and even cross-individual inheritance, this would even

require the modeling at the level of chromosomal behavior. For such com-

plex systems, a deterministic model seems unfeasible. Therefore, the focus

here is shifted from the modeling of all aspects of a human to the modeling

of a cluster of individuals with similar behavior described by a set of indica-

tors or factors. The indicators can be quite fundamental and closely linked

to the traits or states they describe, but they can also be intermediates of

other influences. As an example consider general noise sensitivity. This

important trait variable cannot be described as triggered by a few external

factors. However, indicators (e.g. number of children in household, age,

number of rooms compared to number of people living in a house) could

be found that determine clusters of people for which the noise sensitivity

variable is higher than average in a fuzzy way. Note that this shift does

not mean that the developed annoyance advisor is not capable of handling

every individual with its own values for each indicator used in the model.

To conclude the description of the conceptual annoyance model, three

different groups of input variables that have been identified are summa-

rized.

Triggers According to the results of the Schomer experiment, the primary

input variables triggering the whole process come from the acoustic

field. The term acoustic field is used to stress that the acoustical

characterization is not limited to averaging acoustical indices such

as Ldn or Lden. Nor is it limited to a single point in time or space.

Pre-conditioners or modifiers Non-acoustic factors can be regarded as pre-

conditioners or modifiers that alter the experience of annoyance.

Clustering indicators Variables that together indicate a strong similar be-

havior for a human trait.

In the rule based implementation that will be proposed in this work, all

these variables will be treated very similarly from a mathematical point of

view. In particular all of them can be crisp numbers or vague notions of

perceptions that are described by words. However, other implementation

methods may decide to treat them differently, e.g. by modeling the noise

pre-conditioners as linguistic hedges.
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2.2 Instantiating the annoyance model

As we now have a good understanding of the concepts and their associa-

tions in the domain of discourse, we can start thinking about implementing

this model as a noise annoyance advisor . First of all, it will be necessary

to instantiate the identified associations to concrete links. Then, compo-

nents capable of handling this knowledge to predict the degree of noise

annoyance experienced by a person, will have to be developed. Further-

more, we have already decided that a fuzzy rule based system would be an

ideal framework for this task. In [38] the components that are commonly

found in FRB systems have been described. This set up will also perfectly

suit our needs, see figure 4.4.

At an abstract level, the system can be regarded as a black box that

produces as output a description of the degree of annoyance, that is asso-

ciated with the given input data. Internally, the domain specific intelligence

is incorporated in a knowledge base that is formally defined as a combina-

tion of a database and a (fuzzy) rule base. Using this pool of knowledge,

conclusions about the level of annoyance are drawn from the input data by

the inference mechanism. Finally, the result is interpreted in the linguistic

approximation part. In what follows, these components are described in

more detail.

Noise Annoyance Advisor

knowledge base

input output

«use»

«translate»

«use»«use»

«use»

«result»

database rule base

inference
linguistic

approximation

Figure 4.4: Structure of the noise annoyance advisor implemented as a

fuzzy rule based system.
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2.2.1 Database

An important part of the knowledge base is the database that contains the

definitions of the words and concepts that will be used in the formulation

of rules.

In fact, the whole range of techniques that have been described in chap-

ter 3 can be used to define the meaning of linguistic terms in the model.

Specifically, to represent the concept of noise annoyance, we will use the

membership functions that were constructed with the fuzzification method

with fixed overlap, based on the data collected in the International Annoy-

ance Scaling Study. As argued, this method reflects the intended meaning

of the terms quite well and is optimally suited for this kind of FRB ap-

plications. Additionally, the availability of this large data set allows the

construction of appropriate annoyance representations for a wide diver-

sity of linguistic terms in different languages. This is useful when we have

to work with data from social surveys in multiple languages.

Because other concepts cannot rely on such an extensive amount of

collected data solely for representation purposes, and their definition is

often much more straightforward, other terms will generally be defined in

a more ad hoc fashion, e.g. to represent linguistic labels that describe age,

such as “young” and “old”. In most cases, they have been put forward by

experts in the field. Remark that membership functions are not tuned in

order not to bias their definition towards a specific data set. However, for

some of the variables, fuzzy data clustering techniques [85] have been used

to obtain the membership functions. This was exclusively done when a data

set external to a noise annoyance survey was available, e.g. population sizes

in cities to label a city as “small” or “large”.

2.2.2 Rule base

The fuzzy rule base contains a collection of IF-THEN rules that describe

the instantiated links between the variables in natural language, using the

vocabulary defined in the database. All rules that implement links derived

from the same association in the conceptual model form a set of parallel

rules, rules expressed between the same variables. Because the knowledge

is expressed as linguistic rules, the model is easy to comprehend, even

by non-mathematicians and non-acousticians. At the same time, experts in

the field of acoustics can express their knowledge in a very straightforward

and intuitive way.

All rules implemented in the noise annoyance advisor have been ac-

quired based on this principle. They are derived from expert opinions that

have been found in the literature. Another option to acquire rules is to
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apply rule deduction or knowledge extraction algorithms, e.g. fuzzy clus-

tering, on available survey data. However, as the obtained rules are tightly

fitted to the data, this approach can easily lead to rules that are only valid

in the given data set. The goal of this work is more oriented towards a

stable model that performs equally well on any data set and really repre-

sents the common underlying relations. Therefore, these rule generation

techniques have not been adopted. Yet, as it is even for experts in the

vague and uncertain world of noise annoyance modeling very difficult to

formulate firmly proven rules, all rules should be interpreted as hypothe-

ses. Later, the system will be extended with facilities to detect whether a

rule hypothesis holds or not.

Concerning the FRB, there is still one important issue that must be men-

tioned. People do not live in isolation, instead they interact with each other

and belong to some sort of local community. It has been shown that the

response to noise can differ from community to community [69]. This can

be explained as a sort of culture or local subculture formed by interactions

between individuals that lead to common interpretation and reaction to

stimuli from the soundscape. In the FRB a primitive form of such a culture

could possibly emerge by allowing the exchange of rules between FRB’s as

illustrated in figure 4.5. However, at this stage the noise annoyance advi-

sor does not yet address such possible differences in culture, so a uniform

culture is assumed over all subjects in the region that is modeled.

Noise Annoyance
Advisor

FRB

Noise Annoyance
Advisor

FRB

conceptual annoyance model

culture

society

«instance» «instance»

Figure 4.5: Instances of the annoyance model with interacting fuzzy rule

bases.
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2.2.3 Inference

In chapter 2 various inference mechanisms which allow to draw a conclu-

sion based on a fuzzy rule and an input have been described. It has been

shown that the most widely adopted scheme, the compositional rule of in-

ference, allows three distinct rule interpretations: certainty, possibility and

truth qualifying rules. The choice is determined by the implicator that is

used to model the relation R that expresses the linguistic rule in a mathe-

matical way, and the operator that aggregates the results of parallel rules.

Truth qualifying rules, “If X = A Then Y = B” with the associated con-

notation “the more X is A, the more Y is B” do not seem to provide the

right semantics. For example, consider the antecedent of a rule “distance

to the noise source is far” (the higher degrees of annoyance are less possi-

ble). It may be of no effect if the distance to the source is then even further

as the impact of the source may already be negligible because of the “far”

distance. Possibility qualifying rules, “the more X is A, the more possible

Y is B”, already look much better suited for our purposes. With this kind

of rules, the consequent represents the degree to which a point h ∈ H is

considered at least possible. The information gathering process can then

search for additional information (through other rules) that guarantees a

higher possibility degree for h. However, as our knowledge of the field is

still incomplete, it may be difficult to make sure that all rules for guaran-

teeing possibility are included. It is more natural to start with the initial

premise that all levels of annoyance are possible. The knowledge that is

already available can then restrict the possibility of some annoyance re-

gions. This leads us to an information restriction process expressed with

certainty qualifying rules, “the more X is A, the more certain Y is B”.

In accordance with the literature, certainty qualifying rules should be

modeled with an S-implicator , in particular the Kleene-Dienes implicator

IKD is chosen which is a prominent member of the S-implicator family. The

results of inference from parallel rules are aggregated with the minimum

norm as is required.

Each set of parallel rules thus results in a fuzzy set Hi, i ∈ {1,2, . . . , n}
where n denotes the number of sets of parallel rules. Every fuzzy set Hi
provides a possibility restriction on the annoyance universe H based on

the variable used in the rule antecedents. Of course, all restrictions should

be taken into account together. This aggregation should clearly express an

AND operation, hence a triangular norm operator is required. Instead of

adopting the minimum norm again, the product norm TP is preferred here

because it exploits the maximum amount of available information. The
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fuzzy set for noise annoyance H is thus obtained as

H =
n
∏

i=1

Hi (4.1)

2.2.4 Linguistic approximation

The result of the inference process is handled by the linguistic approxima-

tion unit. Here, the fuzzy set H is converted into a form that is easier to

interpret by humans, and expresses the result in function of a set of lin-

guistic annoyance terms that are a priori defined in the database. Let H
denote the linguistic annoyance variable that can take the linguistic values

L = {L1, L2, . . . , Lm}, m ∈ N, on the annoyance universe H = [0,10] and

j ∈ {1,2, . . . ,m}.
Mathematically, the linguistic approximation process is based on the

concept of an approximate descriptor , which is defined as a mapping from

F(H) to F(L) [51]. Depending on the intended semantics, several approx-

imate descriptions of H can be obtained by using different approximate

descriptors.

Upper approximation The upper approximation descriptor D+H calculates

the degree of consistency of H with each Lj and is defined as,

D+H(Lj) = Overl(H, Lj) = sup
h∈H

T (H(h), Lj(h)) (4.2)

D+H is the set of terms each of which is possibly an appropriate term

for H.

Degree of necessity or certainty This descriptor D−H is the degree of in-

clusion ofH into each Lj and estimates the certainty that an ill-known

value restricted byH is fully compatible with the label Lj . It is defined

as,

D−H(Lj) = Incl(H, Lj) = inf
h∈H

I(H(h), Lj(h)) (4.3)

D−H is the set of terms each of which is certainly an appropriate term

for H.

Lower approximation The descriptor D∗H is the fuzzy set of terms which

certainly entail H,

D∗H(Lj) = Incl(Lj ,H) = inf
h∈H

I(Lj(h),H(h)) (4.4)

The lower approximation gathers all terms Lj more or less included

in H.
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A duality property holds between the lower approximation and the up-

per approximation.

D∗H = D+H (4.5)

In fact, besides the descriptors that were mentioned, all similarity mea-

sures (see chapter 2, section 29 and chapter 3, section 4.2) can be adopted

to measure a degree of approximate similarity between H and each label

Lj .

An interesting alternative is to calculate for each Lj the inverse truth

functional modification [55] or compatibility Comp(H, Lj) [132]. This is a

mapping F(H)→ F([0,1]) defined by

(∀t ∈ [0,1])


τ(t) =






suph∈H(H(h)|Lj(h) = t)
(

L−1
j (t) ≠∅

)

0
(

L−1
j (t) = ∅

)



 (4.6)

The calculated fuzzy truth value τ represents the degree of compatibil-

ity between the two statements, “H = H” and “H = Lj is τ-true”. Taken

over all linguistic labels, the final result of this approach is a fuzzy set over

L × [0,1], which obviously takes more time to compute than the previous

methods. Furthermore, it is also less easy to correctly interpret, by humans

as well as by computers. Therefore, this procedure will not be used in the

noise annoyance advisor.

When using approximate descriptors (or similarity measures) for the

linguistic approximation process, there are still three rather distinct ap-

proaches to report the final outcome of the noise annoyance advisor.

Matching distribution The result of the annoyance advisor is a possibility

distribution over the terms L, indicating the possibility that a term is

a good description of the result. This possibility distribution will be

denoted as πL .

Matching term In this setting, the result is not a possibility distribution

but just the best matching –single– annoyance term. Here, the term

with the highest πL value is chosen as the final output.

Descriptive expression A totally different strategy tries to formulate a de-

scription of the result H using the basic annoyance terms in L, con-

nectives (and, or, except,...) and linguistic hedges (possibly, more or

less,...) [174]. Again, because of the more expensive calculations, this

approach is not used in the annoyance advisor.
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Depending on the intended purpose, the first two methods are used in this

work and implemented in the system. As underlying approximate descrip-

tors, the upper approximation based on the minimum t-norm TM and the

lower approximation based on the Kleene-Dienes implicator IKD have been

used. These specific “matching possibility distributions” will be noted as

π+L and π∗L , resulting in

(∀j ∈ {1,2, . . . ,m})(π+L (Lj) = D+H(Lj) = sup
h∈H

min(Lj(h),H(h))) (4.7)

(∀j ∈ {1,2, . . . ,m})(π∗L (Lj) = D∗H(Lj) = inf
h∈H

max(1−Lj(h),H(h))) (4.8)

2.3 Rule qualification

Of course, not all rules have an equal impact on the result and not all rules

will be equally certain. It is obvious that the noise exposure rules will have

a larger impact on noise annoyance and will be better known than age for

example. In natural language, an important mechanism to take such dif-

ferences into account is the adjunction of a qualifier to a proposition [192],

e.g. “for certain”, “quite possible”, “more or less true”,... Fuzzy qualifiers

are local notions in the sense that they always relate the qualified state-

ment to another statement that is not qualified. What is needed then, is a

translation rule that maps the meaning of a qualified proposition into an

unqualified equivalent [191]. Let us first briefly discuss several translation

rules for a number of common qualifiers [55]. Thereafter, their application

in the noise annoyance advisor will be described.

2.3.1 Translation rules

Let us denoteA and B for fuzzy sets on the variableX defined on a universe

U , so A,B ∈ F(U). First, propositions that are qualified with a degree

of certainty, also called degree of necessity or sufficiency, are considered.

Given that “X = B” the certainty of a fuzzy statement “X = A” reflects the

logical entailment of A from B. In [55], a certainty qualified proposition

“X = A is (at least) λ-certain” with λ ∈ [0,1] is linked to a certainty or

necessity measure, given “X = B”

N(A) = inf
u∈U

I (B(u),A(u)) ≥ λ (4.9)

where I is an implicator. In order to find the underlying sure statement

“X = B”, the inequality must be solved. Dubois and Prade [55] argue that

the identity principle, (∀x ∈ [0,1])(I(x,x) = 1), is required to guarantee
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that the statements “X = A” and “X = A is (1-)certain” are equivalent as

expected. Only a residual implicator and the dual of a residual implicator

fulfill this axiom. Furthermore, assuming that the solution of (4.9) is a

true extension of the case when A is crisp implies that a dual of a residual

implicator, (IRT )∗, must be chosen [55]. Then, the solution is given by

(∀u ∈ U)(B(u) ≤ ISS,N (λ,A(u))) (4.10)

with S the triangular conorm that is dual to the norm T with respect to

the negator N that is used in the dual R-implicator. Specifically, choosing

the dual of the Gödel-Brouwer implicator IGB , the Goguen implicator IG
or the Łukasiewicz implicator IW results in respectively the Kleene-Dienes

implicator IKD, the Kleene-Dienes-Łukasiewicz implicator IKDL or the Łu-

kasiewicz implicator IW . As shown by formula (4.10), a certainty qualified

statement provides an upper bound for a possibility distribution, which

depends on the choice of the S-implicator.

A second kind of qualification is possibility qualification, “X = A is (at

least) λ-possible” with λ ∈ [0,1], which means “all elements of A are pos-

sible values for X at least with degree λ”. The possibility should really be

interpreted as a kind of guaranteed possibility, expressing a degree of evi-

dential support. Hence, a possibility qualification is linked to a guaranteed

possibility measure ∆,

∆(A) = inf
u∈U

IRT (A(u), B(u)) ≥ λ (4.11)

where IRT denotes a residual implicator. Solving this inequality to find the

underlying unqualified statement “X = B” results in

(∀u ∈ U)(B(u) ≥ T (λ,A(u))) (4.12)

where the triangular norm T is the same as the one used in the residual

implicator IRT . In this case, the possibility qualified statement provides a

lower bound for the possibility distribution, which depends on the choice

of t-norm.

In fact, certainty and possibility qualification are just special cases of

truth qualification [56]. A truth qualified statement takes the form “X = A
is τ-true” where τ is a linguistic truth value of the linguistic truth variable

T on the universe [0,1] (see chapter 2, section 8.2). Such a truth qualified

proposition can be converted to the underlying sure statement “X = B” by

applying the truth functional modification,

(∀u ∈ U)(B(u) = τ(A(u))) (4.13)

Based on the above translation rule, it is easy to verify that the application

of a certainty or possibility qualification Q to a fuzzy statement “X = A”
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will result in the same unqualified proposition as “X = A is τ′-true” when

τ′ is obtained as the unqualified result of “T = τ1 is Q”. This property

provides a way to compute a certainty and/or possibility qualification by

virtue of a truth qualification.

Remark that the degree of truth τ of “X = A” given that “X = B” is taken

for granted, can be calculated with the inverse truth functional modification

that was used in section 2.2.4.

2.3.2 Qualification of noise annoyance rules

In the noise annoyance advisor, we are primarily interested in the certainty

that a rule is valid. Therefore, each rule is assigned a certainty or sufficiency

degree λ ∈ [0,1]. This degree expresses to what extent it is sufficient that

the antecedent is true for also having the consequent true. Actually, this

certainty degree will be applied to the rule consequent instead of the rule

itself. Although both interpretations only coincide when the antecedent is

not fuzzy, this is common practice [55].

As a model to implement the upper bound of the certainty qualification

in (4.10), the Kleene-Dienes implicator IKD has been chosen, resulting in

B(u) = max(1− λ,A(u)) (4.14)

As can be seen from the above formula, the consequent of a rule with

λ = 1 (high rule certainty) will remain unchanged, having full impact as

intended. On the other hand, a completely uncertain rule (λ = 0) will not

have any effect because the consequent will have possibility 1 over the

whole universe (concluding from the antecedent that everything is possible

and thus providing no additional information).

Note that the certainty degrees will not be explicitly interpreted to judge

the usefulness of a rule. How they are used and how rules are compared

in general will be explained in chapter 6, section 3.6.

2.4 Measuring performance

The noise annoyance advisor that has been described so far, allows to pre-

dict the degree of annoyance experienced by an individual if input data is

given. But in case the reported label L∗ corresponding to the input data

is also available, e.g. from a social survey, we should be able to verify the

result of the system. Therefore, appropriate performance measures must

be constructed.

A classical crisp annoyance model is correct only if it predicts the re-

ported annoyance label of an individual exactly. Extending this principle
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to our fuzzy noise annoyance advisor calls for the “matching term” linguis-

tic approximation scheme. The result can then be deemed correct if this

term corresponds to the reported label. This performance measure will be

called the “crisp quality measure”.

However, starting from the viewpoint that noise annoyance is an in-

herently vague concept, this approach seems untenable. The “matching

distribution” scheme returns the possibility that the terms in the vocabu-

lary are considered good descriptions of the annoyance level. It might well

be the case that two or even more terms are almost equally possible de-

scriptions for the annoyance. In this situation it is not justified to call the

output simply “wrong” if the possibility degree of the reported label is not

the highest, although the difference is very small. A more natural quality

measure taking the vagueness of annoyance into full account, is a fuzzy

extension of false negative. It expresses the degree to which the reported

label L∗ is not considered a possible description for the system result H.

This can be easily calculated as 1−πL(L∗). When the lower approximation

is used as underlying descriptor, π∗L , the false negative measure can be

interpreted as an upper approximation descriptor of the complement of

the fuzzy annoyance output H.

1−π∗L (L∗) = 1−D∗H(L∗) (def. π∗L ) (4.15)

= D∗H(L∗) (def. complement) (4.16)

= D+
H
(L∗) (duality property) (4.17)

The false negative measure favors a system that is indecisive. Never

excluding any label always results in a very low false negative. Obviously,

such a system would be useless. The non-specificity [116] of the matching

distribution πL is perfectly suited to measure this indecisiveness. If multi-

ple terms are equally good descriptions all having a high possibility degree,

the non-specificity will be high indicating poor quality. This measure is de-

fined as

N(πL) =
m
∑

j=2

πL(Lj) log2

(

j

j − 1

)

(4.18)

where πL has been put in decreasing order so that πL(L1) ≥ πL(L2) ≥ . . . ≥
πL(Lm). The combination of false negative and the non-specificity measure

will be referred to as the “fuzzy quality measure”.

2.5 Tuning rules

Before finishing the description of the noise annoyance advisor , two ques-

tions still must be solved.
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• How to find optimal rule certainty degrees?

• How to use the system to test rule hypotheses?

The answer to both questions is the same. By modifying the certainty de-

gree of each rule, the model is tuned to minimize a suitable error measure

on a sample data set obtained from a social survey. This optimization pro-

cess will extract reasonable weights from the data set which can then be

used to predict the annoyance level for other input data. Additionally, if

a rule performs badly (increasing the error measure) the optimization will

lower the certainty degree of that rule to practically zero. The rule will then

no longer have any (negative) effect on the performance of the system. This

principle enables the user to include rule hypotheses in the FRB and test

whether they hold or not in the sample data set.

The error measure used for this tuning can be defined in several ways.

When the crisp quality measure is adopted, an appropriate error measure

eC is defined as

eC =

N
∑

k=1

m
max
j=1
Lkj≠L

k∗

πL(L
k
j )−πL(Lk∗)

p(Lk∗)

N
∑

k=1
Lkp≠L

k∗

∣

∣

∣

m
max
j=1
Lkj≠L

k∗

πL(L
k
j )−πL(Lk∗)

∣

∣

∣

p(Lk∗)

+
N
∑

k=1
Lkp≠L

k∗

α

p(Lk∗)
(4.19)

where the index k runs over all N records in the data set and p is the prob-

ability distribution of the linguistic terms in the data. Lp and L∗ denote

the predicted and reported term respectively. The left term of the addition

in eC expresses an appreciation for a strong belief in a correct prediction.

It is included to avoid an indecisive, non-specific model. The denominator

is required to normalize the approximate descriptor, otherwise a linguistic

approximation with only very small possibility degrees would be a good

strategy. The constant α is an additional penalty for each wrong predic-

tion, e.g. α = 0.1. For the fuzzy quality measure, the error function eF has

been defined as a combination of its two constituting parts,

eF =
N
∑

k=1

α(1−πkL (Lk∗))2 + (1−α)(N(πkL ))2
p(Lk∗)

(4.20)

with α ∈ [0,1], e.g. α = 0.5. Here, the non-specificity measure will already

penalize an approximate descriptor that has relative small possibility de-

grees everywhere. A denominator to normalize is therefore not required.
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The frequency scaling using p is necessary to compensate the unequally

distributed frequency of annoyance labels. Fortunately, the higher an-

noyance levels occur less often than the lower ones. But of course, they

are equally important (or even more important) to model accurately. The

weight α is introduced to express the non-specificity that is allowed in

the obtained model after tuning. The higher α the more indecisive the

model, where the price to pay for decisiveness or specificity is more fre-

quent misses (or higher false negatives).

Using the “crisp quality measure”, the performance of the model can

easily be communicated by giving the weighted percentage of correctly pre-

dicted annoyance terms. This percentage can then be compared with the

performance of other (crisp) models by calculating the same percentage.

An example representation for the quality of a model after tuning with

the fuzzy quality measure and its associated error measure eF is shown in

figure 4.6.
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Figure 4.6: Distribution of the subjects over a false negative versus non-

specificity plane that is tuned with α = 0.5. The area of the bubbles is

proportional to the number of subjects.

The optimization problem is solved using a genetic algorithm (GA) (see

appendix A) because of the highly multimodal and non-continuous search

space. Each individual in the population evolved by the GA, is in this case

an instance of the model, and is completely represented by a string of

real values in [0,1] that is formed by the certainty degree of each rule. The

fitness of the individuals is maximized by the GA (in its imitation of natural

selection) by minimizing the error measure of the associated models on the

data set. As operators the uniform crossover and a self-adaptive mutation
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step operator are applied. The GA also performs linear fitness scaling.

Remark that a model tuned with the fuzzy quality measures turns out to

almost never peak on the middle annoyance terms, although the possibil-

ity degrees of these terms are sometimes reasonably high. This indicates

that a middle annoyance term would –also– be a good candidate descrip-

tion for the experienced annoyance. The reason for this observation must

be sought in the knowledge base. When acoustical experts formulate rules,

they will often have a clear understanding of circumstances that have a very

low/high possibility for low or high annoyance. However, expressing situ-

ations when the possibility for middle degrees of annoyance is low/high,

is far more difficult. This lack of specific knowledge about the occurrence

of middle annoyance levels, results in more indecisiveness of the middle

terms in the model.

3 Building blocks

The conceptual annoyance model has been built based on cluster indicators

that group people with similar behavior for a characteristic. These charac-

teristics can be fundamental or intermediate ones. It has been found useful

to internally structure the implementing FRB in a hierarchical way, reflect-

ing this conceptual layout. Additional –intermediate– variables can be in-

troduced for which a separate submodel FRB is constructed. In figure 4.7

an example is shown where the noise sensitivity trait is implemented with

a submodel FRB based on its clustering indicators, in a larger annoyance

model designed to predict noise annoyance from road traffic. Using this

set up, intermediate variables can be further decomposed into more eas-

ily measurable variables. Note that variables (e.g. age) may appear multi-

ple times when they influence annoyance through different paths, possibly

even in opposite directions.

If survey questionnaires explicitly assess such intermediate variables,

the resulting data set can be used to test and tune submodel(s) separately.

In these cases, the user has several options for running the whole annoy-

ance model: using the reported value for an intermediate variable directly

in the annoyance model, or calculating a value with the submodel anyway.

There is even a third option that consists of using the submodel but per-

forming linguistic approximation on the result to obtain one of the terms

in the vocabulary of the survey. However, this is not recommended as part

of the uncertainty, the non-specificity , gets lost with this approach.
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Figure 4.7: Hierarchical decomposition of the FRB.

4 Visualization

When the noise annoyance advisor is applied with noise policy decision

support in mind, it is advantageous to visualize the results on a map. This

includes the possibility distribution πL over the available annoyance terms

and the non-specificity variable which is an indication of the uncertainty

of the outcome.

Depending on the purpose of the map, these model results can be shown

in several ways. One approach could be to create one map for each annoy-

ance term and visualize its possibility degree by varying the color intensity

of a point. Although such maps would show all available data, it would be

hard to interpret the maps in a general way. This representation is only

suggested if colored surface maps are required.

Alternatively a map which depicts the possibility distributions in a more

condensed form can be created. Of course, it is more difficult to represent a

possibility distribution over five labels in a single point. A feasible solution

is the use of a pie-chart as a mark. The greater the possibility of a label, the

larger the piece of the pie that is assigned to it. In this case, the uncertainty

is implicitly shown. If one label receives a dominant part of the pie, then the

uncertainty will be small. However, if the pie is equally distributed among

the labels, then there is high uncertainty about the result. An example of

such a map where road traffic noise annoyance is predicted, is shown in

figure 4.8. It is easy to see that the more closely located to a large road, the

larger the fraction of the pie-chart that is filled in black, indicating extreme
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Figure 4.8: Map with possibility distribution represented as a pie-chart.

White indicates the lowest level of annoyance (“not at all annoyed”) while

black indicates the highest level of annoyance (“extremely annoyed”).

annoyance.

Another option is to visualize only the most plausible label, i.e. the

annoyance term with the highest possibility. Hence, a significant amount

of information on the almost equal plausibility of other annoyance terms

gets lost in this type of map. One way to compensate the situation is to

include the non-specificity as an indication of the uncertainty of the result,

e.g. by varying the size of the mark. The resulting map of the same region

and the same model is shown in figure 4.9. Again, note the large black

(certainly extremely annoyed) and occasionally small white points located

near large roads. Remark that the annoyance model is better optimized

with the “crisp performance measures” if this kind of map is set as a goal.

As already explained, the “fuzzy performance measures” tend to peak only

at the more extreme annoyance terms.
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Figure 4.9: Map with most plausible label and the associated non-

specificity. White indicates the lowest level of annoyance (“not at all an-

noyed”) while black indicates the highest level of annoyance (“extremely

annoyed”). The smaller the mark, the more uncertain.

5 Impact of inference schemes

5.1 Computational complexity

The optimization of the rule weights requires many evaluations of the

model with different weights. This means that the calculation speed of

the model is an important issue. Unfortunately, certainty qualifying rules

have a high computational complexity. This is because the mathemati-

cal rule representation R has to be explicitly calculated for each rule. Even

worse, each individual in the genetic algorithm optimization procedure can

change the weight associated to a rule and thus modify the consequent of

the rule. Hence, it is not possible to compute the rule matrices once and re-

use them, they must be re-calculated for each GA individual. So, although

the annoyance prediction of a single data record for a model with a single
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set of (a priory known and fixed) weights only requires a few seconds, the

optimization of the weights on a large data set becomes very time con-

suming and impractical. Especially because an optimization is required,

each time a noise annoyance expert adds, removes or changes a rule (or a

set of related rules) to test the relationships between the various factors

influencing annoyance and each other.

Yet, the certainty qualifying rule scheme can be simplified by applying

the rule weight modification to the result of the rule, instead of to the rule

consequent. Computationally, this has the very important consequence

that the calculation of the rule representation R can be done once and for

all for the model. A re-calculation of R for each set of different rule weights

is not required anymore, as the rule itself is no longer affected during the

optimization process. Semantically, this simplification expresses that the

result of the rule is as certain as the rule itself is, which is a logical assump-

tion. In fact, the following theorem proves that both calculation schemes

with the Kleene-Dienes implicator IKD used both as rule implicator and as

certainty modification operator, always have the same result when the rule

input is normalized.

Theorem 2. Consider a rule “If X = A Then Y = B Is λ Certain” whereX

and Y are variables over the universes U and V respectively, A ∈ F(U), B ∈
F(V) and λ ∈ [0,1]. Let the input of the rule A′ ∈ F(U) be a normalized

fuzzy set.

sup
u∈U

min
(

A′(u), IKD(A(u), IKD(λ, B(v)))
)

= IKD
(

λ, sup
u∈U

min(A′(u), IKD(A(u), B(v)))
)

(4.21)
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Proof.

sup
u∈U

min
(

A′(u), IKD(A(u), IKD(λ, B(v)))
)

= sup
u∈U

min
(

A′(u), IKD(λ, IKD(A(u), B(v)))
)

(exchange principle satisfied by S-implicators)

= sup
u∈U

min
(

A′(u),max(1− λ, IKD(A(u), B(v)))
)

(definition of IKD)

= sup
u∈U

max
(

min(A′(u),1− λ),min(A′(u), IKD(A(u), B(v)))
)

(distributivity of min with respect to max)

= max( sup
u∈U

(min(A′(u),1− λ)),

sup
u∈U

(min(A′(u), IKD(A(u), B(v)))))

(distributivity of sup with respect to max)

= max

(

1− λ, sup
u∈U

(min(A′(u), IKD(A(u), B(v))))
)

(A′ is normalized)

= IKD
(

λ, sup
u∈U

(min(A′(u), IKD(A(u), B(v))))
)

(definition of IKD)

An experimental speed comparison in [165] revealed that this modified

calculation scheme performs twice as fast as the original scheme with cer-

tainty qualification applied to the rule consequents on the same model with

the same data set.

In order to speed up calculation even further, another type of rule must

be considered. In the comparison of rule semantics for the noise annoyance

advisor (see section 2.2.3), possibility qualifying rules also seemed applica-

ble. This type of rule has several advantages that could be useful in the

noise annoyance advisor.

Lower computational complexity For possibility qualifying rules there ex-

ists a very efficient practical algorithm, that does not require the ex-

plicit calculation of the rule representation matrix R.

Easy support for multiple antecedents Adding two antecedents in a cer-

tainty qualifying rule requires the calculation of a three dimensional
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matrix that represents the relation between the two antecedents and

the rule consequent. Of course, this is a very time consuming compu-

tation. Because a possibility qualifying rule does not need an explicit

relation matrix, this type of rule supports multiple antecedents in a

very efficient and straightforward way. The conceptual noise annoy-

ance model (see section 2.1) has been shown to be quite complex.

Therefore, this multiple rule antecedent feature could turn out to be

useful in the formulation of fuzzy rules for modeling annoyance.

Obviously, possibility qualifying rules also have their drawback. The ma-

terial implicators (S-implicators) used in the certainty qualifying rules, an

extension of the classical, binary implication, are not commutative. The

implication expresses a causality, the antecedent implies the consequent.

The “implication” operators used in possibility qualifying rules are com-

mutative triangular norms. Causality is lost, it is impossible to determine

whether the antecedent implies the consequent or if it is the other way

around. Therefore, these rules are unsuitable if the direction of the causal-

ity is important or under investigation. Furthermore, there are of course

also semantical differences between the two types of rules. The impact of

these differences on the noise annoyance advisor are further analyzed in

the next section.

As implicator in the possibility qualifying rules, the minimum t-norm is

adopted. This is the operator most typically found for this type of rules.

The inference results from parallel rules are aggregated with the maximum

t-conorm as prescribed by the theory. This leads to a single fuzzy set Hi,

i ∈ {1,2, . . . , n}, for every set of parallel rules, which can be seen as an

estimate for the outcome of the FRB, the noise annoyance fuzzy set H. Of

course, all Hi sets must be somehow combined to produce this ultimate

outcome. Commonly the maximum t-conorm is also used for this aggrega-

tion. However, in the noise annoyance advisor the maximum t-conorm of-

ten leads to possibility distributions that are almost one everywhere. This

is caused by the way rule hypotheses are eliminated with the certainty

weights. An uncertain rule generates a rule consequent with high possibil-

ity for all levels of annoyance. Also the consequents of rules on variables

that have a relative low impact on the global result, will have high possibil-

ity degrees everywhere. In order to solve this, the interpretation of noise

exposure as a basic trigger and the other variables as modifiers is useful.

The modifiers should be implemented so that they allow the possibility

distribution of the trigger, except when some regions are considered less

plausible by the expert who formulated the rule. This clearly requires an

and-like operation. In the noise annoyance advisor , the product norm TP is

applied for this purpose, because the product uses the maximum amount
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of available information. To avoid situations where a modifier influences

the trigger (in combination with the other modifiers) too drastically because

its Hi is unnormalized (which is typically the case when using possibility

qualifying rules), the Hi fuzzy sets are first normalized. By doing so, the

opinion of the expert that formulated the rule is fully respected. His most

plausible region of annoyance does not contribute, while the regions that

are less plausible do modify the result. The fuzzy set for noise annoyance

is thus obtained as

H =
n
∏

i=1

norm(Hi) (4.22)

The experimental speed comparison in [165] showed that this scheme per-

forms again twice as fast as the certainty qualifying rules with the certainty

modification applied to the rule result on the same model with the same

data set.

5.2 Prediction performance

In the previous section two calculation schemes, certainty qualifying rules

and possibility qualifying rules, have been compared for speed. However,

there is also an important semantical difference between both inference

engines. It is therefore important to investigate their influence on the pre-

diction performance of the noise annoyance advisor.

Using two inference operators, the TM t-norm and the IKD implicator,

and the normalized versus unnormalized aggregation of results of parallel

rules, four combinations exist which have been compared in [165]. Note

that the combination of the IKD implicator with normalized aggregation of

results of parallel rules has been included only for the sake of complete-

ness. Resulting annoyance possibility distributions of the four calculation

schemes, with the same rules and rule weights, for two records in a sample

data set are shown in figure 4.10.

The prediction performance in function of the weighted percentage cor-

rectly predicted annoyance terms of all four schemes has been tested on a

large data set. As expected, the unnormalized TM combination performed

very badly because of the tendency to have a very small membership de-

grees for all values in H. Although the normalized IKD scheme performed

slightly better, the difference between the schemes after optimization of

the rule weights turned out to be less than about 1 %. Apparently, the rule

weights are more or less capable of compensating for the different seman-

tics of the schemes. For the comparison, the “crisp performance measures”

with “matching term” linguistic approximation have been used in the noise

annoyance advisor.
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Figure 4.10: Comparison of different inference interpretations (dashed:

Possibility interpretation unnormalized and normalized, dotted: Certainty

interpretation unnormalized and normalized).

Based on the theoretical principles of approximate reasoning, the un-

normalized TM scheme provides a lower bound and the unnormalized IKD
scheme provides an upper bound for the actual inference result. When

more and more (accurate) knowledge about the noise annoyance construct

becomes available, both interpretations may come closer to each other. At

that time, it could be useful to use both interpretation results in the lin-

guistic approximation process.

In conclusion, it can be stated that the possibility qualifying rules in

combination with optimized rule weights provide a fast alternative to the

certainty qualifying rules, with almost equal prediction capabilities for the

noise annoyance advisor. However, when the causality of the rules is im-

portant, the certainty qualifying scheme must be used, as the direction of

the causality gets lost in the other scheme.





Chapter5

Modeling noise annoyance

accumulation

Knowledge is a process of piling up facts,

wisdom lies in their simplification.

Harold Fabing and Ray Marr

1 Current state of the art

1.1 Problem statement

People are usually not exposed to one type of noise source in isolation,

where a type of source means a clearly distinguishable kind of noise with

its own characteristics, e.g. road traffic, railway traffic, industry... Instead,

community noise is composed of different types of noises that occur simul-

taneously and/or successively. Therefore, to be able to reduce the number

of annoyed people in an area, insight is needed into the accumulation of

annoyance from different sources. The problem of how to model noise

annoyance from combined sources is addressed in this chapter.

From psycho–acoustical laboratory studies in which a group of test sub-

jects is exposed to a variety of controlled stimuli, several annoyance ac-

cumulation models have resulted. But when these models are applied to

predict the total annoyance reported in a social survey , they turn out to be

less accurate. This should not be too surprising as several conditions are

significantly different between laboratory research and field situations. In

the field the retrospective time window is long-term [11] and not particu-

larly related to the short time periods in which for example a plane flies

121
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over. In a laboratory setting, the combined stimuli are always produced by

playing separate noises at the same time, while the noises are heard more

alternately spread over time in the field. Also, the meaning of annoyance

can differ. In a laboratory, people are told to listen and write down whether

they think the sound is annoying or not. This is in fact a completely differ-

ent situation compared to people that are watching television in their home,

getting disturbed by noise. The former is much more related to physical

loudness of noise than the spontaneous experience of annoyance. One of

the most striking differences is the so called “principle of compromise” or

the “combined noise sources paradox”. This paradox states that in field

studies the reported total annoyance level is generally lower than expected

or even lower than the annoyance caused by one of the sources alone. Al-

though this paradox is almost always present in field studies [134] [13], it is

not found in laboratory studies [11]. Hence, several models that have been

constructed based on laboratory experiments tend to overestimate the to-

tal annoyance level reported in field studies. It has been shown that the

wording of the questions in a survey can at least partly explain this para-

dox [90]. If the phrasing explicitly includes the statement “when the noises

occur at the same time”, the paradox is significantly reduced although not

completely eliminated.

In chapter 4, section 2.1 it has been shown that the perception of noise

is not only related to the exposure of the noise. It is influenced by a large

number of attitudinal, personal, situational,... factors. Besides their influ-

ence on the experience of annoyance from a source, authors have pointed

out that several factors can also influence the global annoyance judgement,

such as attitudes, social environment and general lifestyle [139] and gen-

eral and specific noise sensitivity [91].

In the literature two types of accumulation models are distinguished [11].

The first group of models, the psychophysical models, express total annoy-

anceHt in function of the acoustical variablesDs which describe the sound

exposure level of the source s ∈ {1,2, . . . , S} (usually DNL or DENL). Hence,

they all depend on some exposure-annoyance model h that maps the total

exposure into annoyance. The second group of models, perceptual models,

directly express the total annoyance Ht in function of the perceptual vari-

ables Hs which describe the experienced annoyance from source s. Based

on the complexities involved in an individual exposure-annoyance map-

ping (see chapter 4) and the influence of the type of the sources especially

through non-acoustical variables (e.g. attitude towards the source), the per-

ceptual models are preferred in this work. They are the only accumulation

models that are capable of incorporating source specific issues such as

masking, when they are adequately considered in the source specific an-
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noyance models. A sound masks another sound in a physiological sense,

if the latter can not be heard because of the former one. Including such

effects is more difficult in psychophysical models. A perceptual model usu-

ally distinguishes three variables: annoyance caused by a source X alone,

annoyance caused by source X in presence of another source Y , and the to-

tal annoyance (caused by X, Y and possibly also by other sources). Before

addressing the annoyance accumulation problem from a fuzzy annoyance

perspective, some classical models are briefly discussed. For a more de-

tailed elaboration and complete overview, the reader is referred to [11]

and [134].

1.2 Energy summation models

These psychophysical models start by calculating the total exposureDt log-

arithmically from the exposures of the individual sources Ds ,

Dt = 10 log10

S
∑

s=1

10
Ds
10 (5.1)

Total annoyance then follows from an exposure-annoyance relation h.

Ht = h(Dt) (5.2)

It has been noted that equal exposure levels to different noise sources do

not necessarily evoke equal annoyance levels. Therefore, several variations

on this theme have been proposed. The summation and inhibition model

of Powell [133] adds a correction factor E to the total exposure Dt before

estimating total annoyance.

Ht = h(Dt + E) (5.3)

The correction factor E depends on the differences between the sound ex-

posure level of the sources that trigger equal annoyance responses. In

the quantitative model of Vos [169], subjective correction factors Cs are

taking into account the differences in perceived annoyance between var-

ious sources. These correction factors are relative to a reference source

for which the correction factor is 0 and are derived from source specific

exposure-annoyance relations. Hence, they do not only depend on the

source type but also on the exposure level of the source. Furthermore,

the model also allows a more general weighted summation by introducing

a free parameter k.

Dt = k log10

S
∑

s=1

10
Ds+Cs
k (5.4)
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Energetic addition is achieved when k = 10. Experimentally good results

have been obtained for k = 15. This parameter allows to model the situ-

ation in which two equally annoying sources are perceived to be twice as

annoying as one single source. This situation occurs frequently in labora-

tory studies but is usually not present in field studies. Of course, in order to

calculate the total annoyance, the exposure-annoyance relationship of the

source type that was chosen as reference should be used. In [70] [121] [71]

Miedema and Gjestland have developed a similar approach, which they call

the annoyance equivalents model . They start from the assumption that an

invertible, source specific exposure-annoyance relationship is available for

a reference source, e.g. the dose-response relationship for road traffic noise

constructed by Miedema [123]. For all other sources, the exposure level

of the reference source that has equal annoyance as the source specific

exposure level is calculated,

D′s = h−1
∗ (hs(Ds)) (5.5)

where h∗ is the exposure-annoyance relationship of the reference source.

All those equal annoyance transformed exposure levels are energetically

summed and used in h∗, the exposure-annoyance relationship of the ref-

erence source, to calculate total annoyance.

Dt = 10 log10

S
∑

s=1

10
D′s
10 = 10 log10

S
∑

s=1

10
h−1∗ (hs (Ds ))

10 (5.6)

Ht = h∗(Dt) (5.7)

It is important to remark that not all exposure-annoyance relationships are

invertible, especially when they take into account the contextual variables

that modify the experience of annoyance, e.g. the noise annoyance advisor

as described in chapter 4. Therefore, in general, these models are only

suitable in combination with indicators that are easy to calculate.

1.3 Vector summation model

In this perceptual model proposed by Berglund [10], general noise annoy-

ance for two sources with their independently caused annoyance level rep-

resented by the variables Hi and Hj is calculated as

Ht =
√

H 2
i +H 2

j + 2HiHj cos(αij) (5.8)

where αij is a constant that depends on the combination of the sources.
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The constant αij has to be determined from experimental data. Val-

ues for αij of about 90◦ have been found for summation of loudness and

annoyance as occurring in field conditions, thus in the presence of other

sources that may partly mask the loudness [12]. Increasing the constant

above 90◦ can lead to a general annoyance that is lower than the annoy-

ance caused by one source alone, thus indirectly solving the combined noise

sources paradox. Generalization of this model to more than two sources is

a rather cumbersome task, except if αij = 90◦ is assumed for all i and j,

leading to the extended model

Ht =

√

√

√

√

√

S
∑

s=1

H 2
s (5.9)

However, this model excludes the possibility for reducing the overestima-

tion. Changing the αij for all combinations of sources involved would

improve performance, but it is not clear how this should be done in a multi-

source (more than two source) environment.

1.4 Strongest component model

The perceptual strongest component model simply states that the level of

general noise annoyance reported by a test subject, is the strongest of the

annoyance levels caused by any of the particular noise sources that the

subject may be exposed to

Ht =
S

max
s=1

(Hs) (5.10)

Several authors have reported very successful prediction of annoyance

accumulation using the strongest component model both in field study [134]

and in lab research [10], especially when one of the sources dominates. The

theoretical background of this model is nevertheless very weak as its un-

derlying cognitive process is not clear. One can even argue that it is counter-

intuitive. Indeed one expects several sources of comparable (but unequal)

loudness to result in higher annoyance than the annoyance caused by the

loudest source. Nevertheless, even the strongest component model has the

tendency to overestimate global predictions!

Note that there is also a psychophysical formulation of this model which

is then commonly referred to as the dominant source model ,

Ht = h
(

S
max
s=1

(Ds)

)

(5.11)

As this formulation requires a source unspecific exposure-annoyance map-

ping h, this version is not considered any further in this work.
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2 Fuzzy accumulation rules

2.1 Introduction

In this section, a fuzzy perceptual model is developed with a special em-

phasis on the underlying cognitive process. The goal is not to create a black

box model (e.g. strongest component model), the internal reasoning should

be conceptually sound and consistent with the current knowledge in the

field. Furthermore, as already extensively argued in chapter 1, annoyance

is regarded as an inherent fuzzy concept which should also be modeled in

a fuzzy way.

The various processes involved in a perceptual accumulation model are

shown in figure 5.1. The perception process is where our senses register
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Figure 5.1: Overall cognitive process of a perceptual accumulation model.

the surrounding environment. This process also deals with the physiologi-

cal effects of masking (one source that “hides” what we hear from another

source when exposed to two or more sources at a time). In the evalua-

tion process that follows, the perceptions are projected into our frame of

reference, the framework in which we judge our senses. Several different

senses (e.g. noise and odor) may influence each other and personal and

attitudinal factors are taken into account in this evaluation. Following the

dashed lines in figure 5.1, the accumulation process combines the evalua-

tions of all sources and activities into a global evaluation. This process will

be discussed further on in detail. Finally, when a global noise annoyance

judgement is asked, one will have to make a decision about what level of

annoyance to report. This may also be influenced by the phrasing of the

questions and the order in which the questions are asked in the survey.

However, in order to construct a model and to be able to test this model
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with data collected in a social survey , a critical assumption has to be made.

In the model, it will be assumed that the evaluation process leads to a de-

cision on every source or activity (reported in surveys when asked about

the level of annoyance of one source in particular) and that these decisions

are accumulated. This means that the decision to report annoyance from

a specific type of source should be straightforward, and that these deci-

sion effects are negligible when a decision on the accumulated annoyance

follows. This hypothesis will allow the model for accumulation to use the

reported annoyance levels of individual sources to predict the reported

global annoyance level.

The remaining issue is the modeling of the “cognitive accumulation

process”. The simplicity and relative success of the strongest component

model suggests using it as a starting point for deriving a fuzzy annoyance

accumulation model in a formal way. But before doing so, the strongest

component model is further analyzed to identify the underlying cognitive

process. This will provide the key for the fuzzification.

2.2 Cognitive process modeling in binary logic

The maximum-operator in formula (5.10) is a mathematical construct that

has become very common in everyday tasks performed by many people.

However an explicit formulation using classical logic, may be more closely

related to the cognitive task that is performed when a subject tries to an-

swer a general noise annoyance question. In language the strongest com-

ponent model is equivalent to using the following set of logical rules. In

the rules, the expression “one of the sources” refers to the types of sources

that come spontaneously into mind when asked to judge accumulated an-

noyance.

IF annoyance by one of the sources is extremely (annoying)
THEN general annoyance is extremely (annoying).

IF annoyance by one of the sources is very (annoying)
THEN general annoyance is very (annoying)
UNLESS general annoyance is already extremely (annoying).

IF annoyance by one of the sources is moderately (annoying)
THEN general annoyance is moderately (annoying)
UNLESS general annoyance is already very or extremely (annoying).

...
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These rules use the general annoyance variable two times with a slightly

different meaning, once to represent the contribution of a single rule (THEN-

part) and once to represent the aggregated result of all previously pro-

cessed rules (UNLESS-part). For easy mathematical formulation, the an-

noyance contribution of a single rule will be denoted as the variable A(i)

for rule i and the subsequent disjunctive aggregation of these contribu-

tions from rule 1 to rule i will be referred to as H (i)
t . Strictly speaking,

a variable in binary logic can only take one value and not an aggregation

of values. However, in this binary logic formulation only one of the rules

will fire and result in a contribution, so this aggregation does not really

pose a problem. Furthermore using Hs for the annoyance from source

s = {1,2, . . . , S}, L = {L1, L2, . . . , Lm} for the set of the possible linguistic

terms that describe annoyance levels (e.g. “not at all”, “slightly”, “mod-

erately”, “very”, “extremely”) and j = m,m − 1, ...,1, these rules read in

mathematical form,

If

S
∨

s=1

(Hs = Lj) Then A(m−j+1) = Lj Unless

m
∨

j′>j

(H (m−j)
t = Lj′) (5.12)

H (m−j+1)
t =

m−j+1
∨

i=1

A(i) (5.13)

where the initial H (0)
t is none of the available linguistic annoyance terms.

The final result of the cognitive process is then found asHt =H (m)
t . These

logical rules can only be executed in the indicated order, that is from the

highest annoyance level Lm (e.g. “extremely annoyed”) to the lowest one L1

(e.g. “not at all annoyed”). The antecedent of each rule is true if and only

if any of the noise sources s is rated as Lj annoying.

It is very important to point out that, according to the cognitive process

derived from the successful strongest component model, total annoyance

is always related to the annoyance caused by the sources or activities.

In preparation of the fuzzification that will be introduced, the IF-THEN-

UNLESS rules (5.12) can be transformed into an equivalent IF-THEN expres-

sion.

If





S
∨

s=1

(Hs = Lj)


∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Then A(m−j+1) = Lj (5.14)

This reformulation emphasizes that the rules (5.12) do not say anything

about the result when the IF-part is false or the UNLESS-part is true.
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2.3 Fuzzifying the cognitive process

The formulation of the cognitive process behind the strongest component

model in binary logic that has been found, is perfectly suited to implement

using fuzzy logic. This fuzzification has a clear advantage over the binary

logic model, which is best exemplified by considering the following situa-

tion. Assume that a person has primary knowledge of the meaning of words

describing the degree of annoyance that a person can experience. Addition-

ally, assume that our test subject only knows about a single relation: “IF

annoyance by road traffic noise is extreme THEN general annoyance is ex-

treme”. Given the fact that road traffic noise annoyance is “strong”, can

this person give any information on the expected general annoyance? In

classical logic the answer is clearly “NO”. Since the condition that is stated

in the antecedent of the single known rule is not met, the rule does not

fire and no information becomes available. A human reasoner may argue

that “strong” is not that much weaker than “extreme” so it is possible to

some extent that the consequent is true. The test subject may also argue

that since “strong” is weaker than “extreme”, the consequent of the rule

should also be weakened to read “general annoyance is strong”. Finally

the human reasoner may conclude that since “not at all” or “slightly” are

so different from “extreme” it is unlikely that general noise annoyance will

take these values. The above example illustrates why fuzzy logic is such an

interesting approach. Fuzzy logic provides the mathematical background

to imitate human-like reasoning. Because of this, a fuzzy rule based model

is also very well suited to construct a model that aims to imitate human

cognition.

As already pointed out in chapter 4, section 2.2, a fuzzy rule based

model always has more or less the same components: a knowledge base

that comprises a database and a fuzzy rule base, an inference engine and a

linguistic approximation unit (see figure 4.4). This fuzzy rule based accu-

mulation model is no exception. These components and their implemen-

tation in this model will now be briefly discussed.

Database A first step in the fuzzification process consists in fuzzifying

the facts. Hence, the linguistic terms Lj , j ∈ {1,2, . . . ,m}, used in

the antecedents and the consequents of the rules will be represented

as fuzzy sets on a base variable H = [0,10]. See chapter 3 for a num-

ber of techniques to generate these fuzzy sets. Here we will adopt the

curves constructed with the fuzzification method with fixed overlap,

based on the data collected in the International Annoyance Scaling

Study. The resulting membership functions from this method repre-

sent the semantics of the linguistic terms quite well while also being
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perfectly suited to be used in fuzzy rule based applications because

of their overlap.

Rule base Instead of directly incorporating the rules (5.14) in the fuzzy

rule base, the first antecedent is unfolded. This change moves the

disjunction of the annoyance labels of the sources into a disjunction

of several fuzzy rules, each relating to a single annoyance source.

The unfolded scheme (5.15)–(5.17) is preferred because it allows more

control over the contribution of each annoyance source which will

become handy in the remaining part of this section. The notation

A(m−j+1)
s will be used to denote the annoyance contribution by the

rule for annoyance level j ∈ {1,2, . . . ,m} and source s ∈ {1,2, . . . , S}.
The rules now have the following structure for j =m,m− 1, . . . ,1.

If (H1 = Lj)∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Then A(m−j+1)
1 = Lj (5.15)

If (H2 = Lj)∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Then A(m−j+1)
2 = Lj (5.16)

. . .

If (HS = Lj)∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)



 Then A(m−j+1)
S = Lj (5.17)

Inference In order to infer results from the fuzzy rules combined with ac-

tual input data, all binary operations (conjunction, disjunction, nega-

tion, modus ponens) also have to be replaced by their fuzzy exten-

sions (t-norm, t-conorm, negator, generalized modus ponens). The

various choices that have been made are now discussed in detail.

The rules described above are clearly a knowledge gathering proce-

dure: each rule creates the possibility of an annoyance level. They

are possibility qualifying rules, therefore the rule relation R should be

represented by a t-norm (see chapter 2). Most commonly the Zadeh

norm TM is used for this purpose. The fact that possibility qualifying

rules provide the right semantics implies that the very efficient rule

implementation algorithm can be applied.

For the conjunction of both antecedents, any t-norm can be used.

However, a small t-norm (such as the product norm TP and the Łuka-

siewicz norm TW ) will decrease the degree of fulfillment of the rules

except for the first rule in which the second part of the antecedent

will always be 1 (the neutral element for t-norms). Hence, the highest
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level of annoyance in the first rule would be favored. Considering the

principle of compromise and the tendency of the strongest component

to overestimate the level of annoyance, this is obviously not desired.

Therefore, the largest t-normTM is preferred for the conjunction. For

the negation, the typical Zadeh negator NZ is adopted.

The set of rules (5.15)–(5.17) have been obtained by unfolding the dis-

junctive antecedent from (5.14) into a number of disjunctive rules. So

the inferred rule resultsA(i)s should also be aggregated with a disjunc-

tion,

A(i) =
S
∨

s=1

A(i)s . (5.18)

This fits nicely into the knowledge gathering semantics of our possi-

bility qualifying rules. As a model for the disjunction, any t-conorm

can be used. Note that the rule results are in fact possibility distri-

butions that should be interpreted here as degrees of (guaranteed)

possibility (not degrees of certainty, see chapter 2, section 6.3). Ac-

cording to the related principle of maximum specificity, such possi-

bility distributions should be combined with the maximum operator

as this assures that no additional information is included. Therefore,

the SZ –maximum– t-conorm is adopted.

Finally, the information gathered so far, denoted as H
(m−j+1)
t , is nec-

essary in the following set of rules for a lower annoyance level. It can

be calculated with formula (5.13). To model the disjunction operator,

the principle of maximum specificity should be taken into consider-

ation again. Hence, the Zadeh t-conorm SM is used. The complete

fuzzy rule inference process is shown in figure 5.2.

Linguistic approximation Finally, the linguistic approximation component

is responsible for mapping the fuzzy rule base result Ht = H(m)t into

an expression that is meaningful to the user.

For this purpose we will once again use the approximate descriptor

concept that has been described in chapter 4, section 2.2.4. An ap-

proximate descriptor is a mapping from F(H) to F(L). The obtained

possibility distribution over the available linguistic terms expresses

the possibility that a linguistic term is a good description of the orig-

inal fuzzy set. Two approximate descriptors seemed interesting, the

upper approximation π+L and the lower approximation π∗L .

Depending on the context, one can prefer to look only at the term

with the highest possibility (“matching term”) or take the whole pos-

sibility distribution into account (“matching distribution”). The first
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Figure 5.2: Structure of the fuzzified accumulation rule base model.

approach can be useful when a comparison with a survey answer or

a crisp model is necessary, while the latter is a more natural fuzzy

approach. In that case, the performance of the model should be

measured with the false negative and non-specificity measures as ex-

plained in chapter 4, section 2.4.

The cognitive accumulation process underlying the crisp strongest com-

ponent model has been identified and has been formulated using binary

logic rules. By replacing the binary operators by their extensions from

fuzzy logic, a fuzzy rule based model for the cognitive process has been

constructed. Although various choices for the involved operators offer

additional modeling freedom, the nature of the cognitive process (infor-

mation gathering) and the principle of compromise have pushed choices

into a specific direction. As this fuzzy rule based model is in fact a direct

extension of the reasoning behind the strongest component model, results

are expected to be almost the same (although small differences may occur).

There seems to be no benefit in making the logic model fuzzy unless addi-

tional features are added. This will be the topic of subsequent sections.
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2.4 Rule qualification

In the model described so far, all noise sources and activities have an equal

impact on the final accumulation result. This is of course not very realistic.

Therefore, an improved annoyance accumulation model should differenti-

ate between sources. In fuzzy rule based systems, rules can be qualified to

express their relevance. In chapter 4, section 2.3, three distinct fuzzy qual-

ifiers have been discussed, certainty qualification, possibility qualification

and the more general truth qualification.

In the cognitive model, the execution order of the rules is important.

Each rule guarantees the possibility of an accumulated annoyance level

based on a particular source, so a possibility qualification λ ∈ [0,1] seems

most appropriate. This degree expresses to what extent the consequent can

be guaranteed possible when the antecedent is true. In the noise annoyance

accumulation model, a possibility qualified linguistic rule could read for

example:

IF annoyance by road traffic is very (annoying)
THEN general annoyance is very (annoying)
IS 0.8 possible
UNLESS general annoyance is already extremely (annoying).

In our fuzzy rule base, we have one rule for each combination of a

source and a linguistic annoyance term, so a possibility degree λs,j with

s ∈ {1,2, . . . , S} and j ∈ {1,2, . . . ,m} has to be determined. This leads to

the following fuzzy rules, for j =m,m− 1, . . . ,1 and s = 1,2, . . . , S,

If (Hs = Lj)∧


¬
m
∨

j′>j

(H (m−j)
t = Lj′)





Then A(m−j+1)
s = Lj Is λs,j Possible

(5.19)

As the possibility degrees are implemented on the rule consequents and

the triangular norm TM is used for the calculation of the lower bound of

the possibility distributions chapter 4, section 2.3, the rule consequents

become,

(∀h ∈ H)(L∗j (h) = min(λs,j , Lj(h))) (5.20)

To reduce complexity, we assume λs,j = λs · λj , where λs ∈ [0,1] de-

pends on the source and λj ∈ [0,1] on the level of annoyance. Indeed, it is

legitimate to assume that the importance of a noise source will be the same

for all levels of annoyance, and that in the accumulation the annoyance lev-

els will have an equal weight over all sources. In fact, in [13] and [81] the
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relative importance of sources in the accumulated judgement has been re-

lated to the “on time” of the source, the period of time of annoyance by

that source.

Both sets of possibility degrees are extracted from survey data by min-

imization of an error measure e. The same error measures as defined

in chapter 4, section 2.5 can be used,

eC =

N
∑

k=1

m
max
j=1
Lkj≠L

k∗

πL(L
k
j )−πL(Lk∗)

p(Lk∗)

N
∑

k=1
Lkp≠L

k∗

∣

∣

∣

m
max
j=1
Lkj≠L

k∗

πL(L
k
j )−πL(Lk∗)

∣

∣

∣

p(Lk∗)

+
N
∑

k=1
Lkp≠L

k∗

α

p(Lk∗)
(5.21)

and

eF =
N
∑

k=1

α(1−πkL (Lk∗))2 + (1−α)(N(πkL ))2
p(Lk∗)

(5.22)

where the index k runs over all N records in the data set, πL is the possibil-

ity distribution over the set L that results from the linguistic approximation

and N(πL) is the non-specificity of this distribution. p is the probabil-

ity distribution of the linguistic terms in the data. Lp and L∗ denote the

predicted (“matching term”) and reported term respectively. The weight

α ∈ [0,1] is introduced to express the non-specificity that is allowed in

the model after tuning. The higher α the more indecisive the model. The

error measure eC is preferred when the aim is to compare the performance

of the model with the performance of a crisp model.

Data from surveys in which people are asked to judge their experience

of total annoyance and annoyance caused by several types of sources sep-

arately, can be used to minimize the error measure. This optimization is

performed by a genetic algorithm (GA) (see appendix A). Each individual in

the population evolved by the GA is in this case an instance of the model

and is completely represented by a string of real values in [0,1] that is

formed by the possibility degrees of the sources λs (s ∈ {1,2, . . . , S}) and

the linguistic labels λj (j ∈ {1,2, . . . ,m}). The fitness of the individuals

is maximized by the GA by minimizing the error measure of the associ-

ated models on the data set. As operators the uniform crossover and a

self-adaptive mutation step operator are applied.
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2.5 Changing the frame of reference

Adding relative importance by means of qualifiers is not the only way the

fuzzy model can be made source dependent. Rating a particular charac-

teristic of an object or a situation always involves a frame of reference.

In [132] the frame of reference is also called the frame of cognition. It is

known that fuzzy sets and the linguistic terms associated with them are

context-dependent, e.g. when rating the height of people or buildings the

frame of reference will be different because of the different context. The

fuzzy sets used for the representation of the annoyance terms in the fuzzy

rule base are based on data specifically collected in the context of the per-

ception of annoyance. However, there is no particular reason to assume

that the frame of reference for rating road traffic noise annoyance will be

exactly the same as for rating general noise annoyance. Although the dif-

ferences will probably be rather small, they are nevertheless not necessarily

negligible.

In the proposed fuzzy rule based model, the frame of reference can

be different for the antecedent and the consequent of a rule. This leads

to different universes Ls and Lt , containing possibly different definitions

for the same linguistic terms and/or additional linguistic terms, that can

be used in the antecedents and/or the consequents. To avoid confusion

here, we will not redefine the basic annoyance terms. Instead, additional

terms and slightly modified terms will be considered. When the universe

Lt contains additional linguistic terms, more possibilities for the verbal

descriptions of the rules are allowed. For example a rule may read,

IF rail traffic noise annoyance is extremely (annoying),
THEN general annoyance is strongly (annoying).

Another option is to use linguistic modifiers (or hedges) to modify the mean-

ing of terms. This approach can incorporate more subtler changes caused

by frame of reference differences that cannot be accurately described oth-

erwise. The example could then read,

IF rail traffic noise annoyance is extremely (annoying),
THEN general annoyance is a bit less than extremely (annoying).

Several mathematical models for hedges have been developed [53], see

also chapter 2, section 8.2.

In the accumulation model, a shifting hedge is preferred. Shifting mod-

ifiers have the desirable properties that they change the support (contrary

to powering hedges) of the fuzzy set and that they are very simple to im-

plement. Using shifting hedges, the modified membership function L∗j (h)
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for the representation of the linguistic expression “a bit less than Lj” is

defined as,

(∀h ∈ H)(L∗j (h) = Lj(h−ϕ)) (5.23)

where ϕ is a suitable constant. It is straightforward to make ϕ dependent

on the source since the change in the frame of reference can depend on the

source. This results in S additional parameters ϕs with s ∈ {1,2, . . . , S}
where S denotes the number of sources.

Just as the parameters λs and λj , the parameters ϕs can be included in

the optimization by the genetic algorithm (GA).

2.6 Integration in the noise annoyance advisor

The fuzzy annoyance accumulation model that has been built can be used

separately, or it can be seen as a building block in the noise annoyance mod-

eling framework that has been developed in chapter 4. How this building

block fits in the overall fuzzy framework is shown in figure 5.3.

Accumulation
Model

Annoyance by road traffic

Annoyance by rail traffic

Annoyance by factories

Annoyance by dance halls

Annoyance by ....

Global Annoyance

Figure 5.3: Fitting the accumulation model in the overall framework.

Just as in the case of the other building blocks, input data from surveys

can be used to tune the accumulation (sub)model separately. But if desired,

the (sub)model can also be executed (or even tuned) with the output of the

models for the annoyance caused by individual sources. This decision will

largely depend on the availability of data and the purpose of the modeling

or prediction effort.
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3 Models based on fuzzy integrals

3.1 Multi-criteria decision making

3.1.1 Introduction

In the previous section, we have examined the cognitive process underly-

ing the successful (crisp) strongest component model by means of fuzzy –

linguistical– rules. In this section, the noise annoyance accumulation prob-

lem will be regarded from a different perspective. It will be approached as

a multi-criteria decision making (MCDM) problem.

Multi-criteria decision making consists of comparing decision alterna-

tives according to several points of view or criteria [119]. Three different

flavors of MCDM problems can be identified.

Choice or selection selects a subset of alternatives judged as the most ap-

propriate. The number of elements in the subset should be kept as

low as possible.

Sorting or classification assigns each alternative to one of a number of

predefined categories. Classification into the real line R is usually

called regression.

Ranking or ordering ranks the alternatives in decreasing order of prefer-

ence.

To be able to make its decision, the MCDM process requires the evaluation

of each alternative on each criterion. These evaluations are then aggregated

to obtain a global ranking of the alternatives, a sorting into different classes

or a selection of acceptable alternatives. The criteria can be evaluated on

an ordinal or cardinal scale or by means of a fuzzy value.

Let us now restate the MCDM approach in a more rigid mathematical

terminology. Let U be the finite set of n predictive criteria {u1, u2, . . . , un},
and denote the evaluation of a criterion ui by f(ui). The problem is then

to aggregate the evaluation of each of the individual criteria to obtain the

overall evaluation of the objective criterion v .

D(v) = G(f(u1), f (u2), . . . , f (un)), (5.24)

where G is an aggregation function. Typical examples of MCDM problems

are the assignment of grades to students based on their results for multiple

courses and the selection of the best candidate for a job vacancy.

To model the aggregation, several approaches are available. The most

classical being linear multiregression where the evaluation of the objective
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criterion is modeled as a weighted arithmetic means of the evaluations of

the predictive criteria.

D(v) =
n
∑

i=1

wif(ui) (5.25)

with
∑n
i=1wi = 1 andwi ≥ 0 for all i ∈ {1,2, . . . , n}. A presumption of such

models is the fact that there is no interaction among the predictive criteria

towards the objective criterion. However, in many real-life problems, such

as annoyance modeling, this interaction between criteria must be taken

into consideration. In order to represent interactions between the criteria,

the purely additive weight vectorw can be substituted by a fuzzy measure.

A fuzzy measure allows not only to assign a weight to each criterion but

also to each subset of criteria.

The extension of an additive weight vector to more general fuzzy mea-

sures naturally leads to the use of fuzzy integrals such as the Choquet

integral and the Sugeno integral (see chapter 2) as aggregation functions.

In fact, the Choquet integral coincides with the weighted arithmetic means

when the fuzzy measure is additive. Both fuzzy integrals have been applied

successfully in the framework of MCDM [171] [170] [52].

3.1.2 Noise annoyance accumulation as MCDM

Adopting the MCDM view on the noise annoyance accumulation problem,

the evaluation of the level of total annoyance will be the decision that has

to be made. As the possible levels of annoyance will be usually predeter-

mined and depending on the labels that were available in a survey, the

modeling and prediction of the accumulated noise annoyance is a clas-

sification problem on an ordered scale in MCDM. Each source of annoy-

ance is a predictive criterion, while total annoyance is the objective crite-

rion. The alternatives are the elements of the ordered set of annoyance

levels. Let S = {r1, r2, . . . , rS} denote the set of all annoyance sources.

The domain of the evaluation of the alternatives for an annoyance source

s ∈ {1,2, . . . , S} can be represented as the set Ls in the interval [0,1]. De-

fine Ls = {0 = ls1 ≺ ls2 ≺ . . . ≺ lsm = 1} with m ∈ N and lsj , j ∈ {1,2, . . . ,m},
as the evaluation of a linguistic annoyance term for source s. The relation

≺ defines the order of the annoyance levels where the lowest number in Ls

denotes the lowest level of annoyance for source s. The sets Ls define an

ordinal scale that is based on the linguistic labels used in a social survey .

However, as the annoyance scale in a survey is usually independent of the

source and for the sake of simplicity of model parameters, we will assume

L = L1 = . . . = LS here. Yet, the subtle differences in the frame of refer-

ence of the annoyance of each source should be taken into account using
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different sets Ls . Note that although the set L defines an ordinal scale, an

underlying cardinal annoyance scale can be assumed. In fact, the idea of

a cardinal annoyance scale is used in several annoyance surveys as well

as in the International Annoyance Scaling Study [65] where the annoyance

had to be rated on a continuous line. Based on the previous notations, the

evaluation function f is a mapping S → L ⊆ [0,1]. Also for the domain of

the evaluation of total annoyance, the same scale L will be adopted.

Using the Choquet integral as aggregation operator,

D(Ht) = Cµ(f ) (5.26)

results in an evaluation of the total annoyance Ht , expressed as a number

in the interval [0,1]. The Choquet integral explicitly requires the existence

of a cardinal scale in its calculations. Considering the elements in L as

midpoints of intervals on the underlying cardinal scale, the result D(Ht)

can be expressed in function of the input categories L. The category l ∈ L
is chosen as the classification result if D(Ht) falls in the interval around

l. In the following we will assume the shorthand notations d = D(Ht) and

the value of l will be denoted as d′.
When the Sugeno integral is adopted as aggregation operator,

D(Ht) = Sµ(f ) (5.27)

only the properties of an ordinal scale are used. However, the result of this

aggregation will only be an element of the ordinal scale Ls , if all the fuzzy

measure values are also drawn from this ordinal scale. In the case of a

more general fuzzy measure, the result will simply be a number in the in-

terval [0,1], not necessarily in Ls . In these cases, an engineering approach

is followed. The same post-processing, based on the assumption of a car-

dinal scale with intervals, will be applied to classify the result to one of the

predetermined levels of annoyance. Although this violates the principles

of the ordinal scale, this approach is commonly used in practice [30].

The approach sketched above leaves only the question of finding the

optimal fuzzy measure that can be used by one of the integrals. The fuzzy

measure associated with the fuzzy integral provides a means to represent

the relationships between the predictive criteria. It expresses the confi-

dence in the adequacy of a subset of annoyance sources to predict the

total annoyance. The adopted strategy is to extract the fuzzy measure

from survey data by optimizing the prediction –or in MCDM terminology

classification– capabilities of the integral based model. But let us first recall

from chapter 2 how a fuzzy measure can be specified.

Enumeration The most straightforward representation of a fuzzy mea-

sure is by enumerating the fuzzy measure value for all criteria and
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all subsets of criteria.

Relationship Another possibility is to rely on a relationship that specifies

how to calculate the fuzzy measure of an union of criteria based on

the fuzzy measure values of the individual criteria, e.g. probability

and possibility measures.

Alternative representation Finally, a completely different representation

scheme can be used based on some kind of transformation of the

fuzzy measure.

As the number of parameters in the enumeration approach grows exponen-

tially with the number of sources S, 2S − 2, and S is typically rather high

in annoyance modeling (around 20), this approach seems not feasible. The

other ways of specifying a fuzzy measure require far less parameters and

will be examined in detail in section 3.2.

No matter how the fuzzy measure is represented and how many param-

eters are needed, the solution landscape of the annoyance accumulation

classification is complex and highly non-linear. Therefore, the optimiza-

tion of the parameters of the fuzzy measure is performed with a genetic

algorithm [171] (see appendix A). Of course, this requires an appropriate

error measure that can be minimized by the GA. Let the data set from a

survey consist of N records of the form (f (r1), f (r2), . . . , f (rS), d
∗) where

d∗ denotes the reported evaluation of the total annoyance. A suitable error

measure e which equalizes the different frequencies of occurrence of d∗

values in the data set can be defined as

e =
N
∑

k=1

(dk − d∗k )2
p(d∗k )

+
N
∑

k=1
d′k 6=d∗k

α

p(d∗k )
(5.28)

where p is the probability distribution of the linguistic terms in the data set

and α is an experimentally determined, additional penalty for each wrong

prediction.

3.1.3 Inconsistent decision maker

Usually, a decision maker is supposed to follow some kind of logical pat-

tern in making its decision. Students expect that they are all judged in the

same fair way and that the weights of courses and combinations of courses

are equal for all students in calculating their final score. However, in the

case of grading students there is typically only a single teacher or decision

maker responsible for this job. In the noise annoyance accumulation clas-

sification, we are trying to classify the decisions of N different persons, in
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order to find the common logic behind the accumulation process. So our

MCDM tool is likely to be confronted with data from different respondents

that look inconsistent

Two kinds of inconsistencies can be identified which are called “doubt”

and “reversed preference” in [32].

Doubt Consider the following two different respondents p and q,

(f (r1), f (r2), . . . , f (rS), d
∗
p)

and

(f (r1), f (r2), . . . , f (rS), d
∗
q )

Seeing only the evaluations of the predictive criteria,

(f (r1), f (r2), . . . , f (rS))

the MCDM will be in doubt whether the objective criterion should be

classified as d∗p or d∗q .

Reversed preference There is also a problem if for two different respon-

dents p and q,

(fp(r1), fp(r2), . . . , fp(rS), d
∗
p)

and

(fq(r1), fq(r2), . . . , fq(rS), d
∗
q )

the following property holds,

(∀i ∈ {1,2, . . . , S})(fp(ri) � fq(ri)∧ d∗p � d∗q )

where ≺ denotes the relation that defines the order of the annoy-

ance levels. Here, for all sources, person p is less or equally annoyed

than person q, although p has evaluated his total annoyance level

higher than q. Because of the monotonicity property of fuzzy inte-

grals (see chapter 2, section 7.2.3), it is impossible to classify both

respondents correctly.

Finally, there is also a type of inconsistency that is inherent to the choice

of fuzzy integrals and the problem of annoyance accumulation at hand.

Notwithstanding the principle of compromise, accumulated annoyance can

be less than expected and even less than the most annoying source. But

total annoyance can sometimes also be rated higher than the most an-

noying source. Yet, the compensating behavior of fuzzy integrals states

that the aggregated result can never be less than the minimum evaluation

of all sources and never be higher than the maximum evaluation of all
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sources. Hence, if the reported global annoyance is lower/higher than the

minimum/maximum of the annoyance of all sources, the data record can

never be classified correctly.

Luckily, the GA is capable of handling all these inconsistencies in a

transparent way, there is no need to filter them out manually. By min-

imizing the error function, the GA will automatically try to classify the

maximum number of data records correctly.

3.2 Learning fuzzy measures

3.2.1 k-additive Choquet integrals

Choquet integrals have a strong affinity with a class of fuzzy measures

known as k-additive measures [31]. Therefore, it is straightforward to start

our modeling attempts with the combination of these measures and the

Choquet integral. Before discussing this class of measures, we must first

present the alternative representation that is used in their definition, which

is based on the Möbius transform of a fuzzy measure.

Definition 56 (Möbius transform [74]). The Möbius transform of a set func-

tion (not necessarily a fuzzy measure) µ on U is the set functionm : P(U)→
R defined by

m(A) =
∑

B⊆A
(−1)|A\B|µ(B) (5.29)

for all A ∈ P(U).

Definition 57 (Zeta transform [31]). The Zeta transform of a set function

m on U is the set function Zm : P(U)→ R defined by

Zm(A) =
∑

B⊆A
m(B) (5.30)

for all A ∈ P(U).

The Möbius and the Zeta transform are each others inverse, so when the

Zeta transform is applied to the Möbius representation of a set function,

the original set function is recovered. However, not every Möbius repre-

sentation of a set function is a fuzzy measure, but there exist necessary

and sufficient conditions as expressed in theorem 3.

Theorem 3. [34] A set function m : P(U)→ R is the Möbius transform of a

fuzzy measure µ on U if and only if

(i) Boundary: m(∅) = 0
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(ii) Normalization:
∑

A⊆Um(A) = 1

(iii) Monotonicity: (∀A ∈ P(U))(∀i ∈ A)(∑i∈B⊆Am(B) ≥ 0)

Now that it is shown that a fuzzy measure can be represented by its

Möbius coefficients, the concept of k-additive (fuzzy) measures can be de-

fined.

Definition 58 (k-Additive measure [74]). Let k ∈ {1,2, . . . , n} and A ∈
P(U). A fuzzy measure µ on U is called k-additive if its Möbius transform

satisfies m(A) = 0 whenever |A| > k and there exists at least one subset B

of U such that |B| = k and m(B) 6= 0.

Note that probability measures (see chapter 2, section 7.2.2) are in fact

1-additive measures. Usually, they are simply called additive measures.

As already stated, the complete specification of a fuzzy measure re-

quires 2n − 2 parameters for n criteria. Relying on k-additive measures,

this number of parameters reduces to
∑k
i=1

(

n
i

)

[30].

As has been shown in [34], there exists a very efficient calculation al-

gorithm for the Choquet integral when based on a k-additive measure. A

Choquet integral with respect to a k-additive measure will be shortly re-

ferred to as a k-additive Choquet integral . A k-additive Choquet integral

can be directly written as a function of the Möbius representation m of µ.

Cµ(f ) =
∑

A⊆U
m(A)

∧

i∈A
f(xi) . (5.31)

This representation of the Choquet integral has the advantage that is does

not require the reordering of the criteria, contrary to the definition given

in chapter 2, section 7.2.3.

Let us now return to our annoyance accumulation problem and the op-

timization of a k-additive Choquet integral model with a GA. An important

issue in a GA is the representation of an individual in the population. In

the case of a k-additive measure, a representation as a string of real values,

one for each Möbius coefficient, seems trivial. But care must be taken that

all individuals represent a true fuzzy measure and hence, satisfy all con-

ditions of theorem 3. The boundary condition is automatically fulfilled by

definition. The normalization requirement is easy to satisfy by dividing all

Möbius coefficients by their sum. Yet, the monotonicity constraint is much

harder to realize. In [37] it has been shown that a convex combination of

two Möbius representations of fuzzy measures is again a Möbius represen-

tation of a fuzzy measure. However, for the noise accumulation modeling

with typically a rather high number of sources, it will be difficult to opti-

mize for any k higher than 2. In the case of 2-additive measures, another

efficient monotonicity test can be derived as shown in the next theorem.
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Theorem 4. A 2-additive Möbius transformm on a universeU = {u1, . . . , un}
satisfies the monotonicity constraint,

(∀A ∈ P(U))(∀i ∈ A)




∑

i∈B⊆A
m(B) ≥ 0





if and only if

(∀j ∈ {1,2, . . . , n})(m({uj})+ sj ≥ 0) (5.32)

where Sj = {T |T ∈ P(U) ∧ uj ∈ T ∧ |T | = 2 ∧m(T) < 0} and sj =
∑

T∈Sjm(T).

Proof. Let Ej =
⋃

T∈Sj T .

1. Necessary. Because m is 2-additive (m(T) = 0 for all T with |T | > 2),

the condition m({uj}) + sj ≥ 0 for all j ∈ {1,2, . . . , n} is necessary

to fulfill the monotonicity constraint for A = Ej and i = uj .

2. Sufficient.

(a) For all K ∈ Sj , let S′j = Sj \K, s′j =
∑

A∈S′jm(A) and E′j =
⋃

T∈S′j T .

From this follows that E′j ⊂ Ej .

K ∈ Sj (5.33)

a m(K) < 0 (definition Sj) (5.34)

a s′j > sj (5.35)

a m({uj})+ s′j >m({uj})+ sj (5.36)

a m({uj})+ s′j > 0 (m({uj})+ sj ≥ 0) (5.37)

This guarantees the monotonicity constraint for A = E′j and i =
uj because m is 2-additive (m(T) = 0 for all T with |T | > 2).

Applying this reasoning recursively for all elements of Sj shows

that the condition m({xj}) + sj ≥ 0 for all j ∈ {1,2, . . . , n} is

sufficient to fulfill the monotonicity constraint for {uj} ⊆ A ⊂ Ej
and i = uj .

(b) For all uk ∉ Ej , let K = {uj , uk}, S′′j = Sj ∪ K, s′′j =
∑

T∈S′′j m(T)
and E′′j =

⋃

T∈S′′j T . From this follows that Ej ⊂ E′′j .

K ∉ Sj (definition Ej) (5.38)

a m(K) ≥ 0 (definition Sj) (5.39)

a s′′j > sj (5.40)

a m({uj})+ s′′j >m({uj})+ sj (5.41)

a m({uj})+ s′′j ≥ 0 (m({uj})+ sj ≥ 0) (5.42)
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This guarantees the monotonicity constraint for A = E′′j and i =
uj because m is 2-additive (m(T) = 0 for all T with |T | > 2).

Applying this reasoning recursively for all elements of U \ Ej
shows that the conditionm({uj})+sj ≥ 0 for all j ∈ {1,2, . . . , n}
is sufficient to fulfill the monotonicity constraint for Ej ⊂ A ⊆ U
and i = uj .

This theorem provides a convenient test to verify that an individual in

the population represents a valid 2-additive measure. Besides, when the

test for a singleton {uj}, j ∈ {1,2, . . . , n}, fails, the negative contributions

to the sum sj can all be divided by −sj/m({uj}) to ensure that the test for

{uj} passes. It provides a means to adapt “faulty” individuals to correct

fuzzy measures that can be used in the k-additive Choquet integral (al-

though this adaptation significantly modifies the information contained in

the parents). Also note that the monotonicity is not affected by normalizing

the fuzzy measure when the sum of all Möbius coefficients is positive.

By using a string of real values (one for each Möbius coefficient) to rep-

resent an individual in combination with the outlined monotonicity check

and normalization, the GA only explores meaningful fuzzy measures and is

allowed to apply a uniform crossover operator and a self-adaptive mutation

step operator in its search for the optimal 2-additive measure.

It turned out that a 2-additive Choquet integral did not work well for

the noise annoyance accumulation modeling. Performance was not much

better than can be obtained by a single –constant– source alone. An expla-

nation could be found in the success of the strongest component model

which is rather “maxitive” instead of “additive”. Therefore, attention is

switched to possibility measures and their generalized variations.

3.2.2 Possibilistic measures for the Choquet integral

Although the Choquet integral is easy to express in function of a k-additive

measure, in [180] Yager has outlined an algorithm to calculate a Choquet

integral based on a (generalized) possibility measure. Recall from chap-

ter 2 that a generalized possibility measure or a S-decomposable measure

is defined as

µ(A∪ B) = S(µ(A), µ(B)) (5.43)

with S a t-conorm. When S = SM the measure reduces to the possibility

measure. Formula (5.43) makes clear that generalized possibility measures

are fully specified by the n fuzzy measure values of the singletons µ({ui})
for i ∈ {1,2, . . . , n}. Furthermore, the normalization constraint of a fuzzy
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measure is always satisfied when at least one of these singleton values is

equal to 1, whatever t-conorm S is chosen. For the following, the notational

short-hands ei = µ({ui}) and ai = f(ui) are convenient.

In accordance with [180], the Choquet integral will be expressed as

Cµ(f ) = wTb =
n
∑

j=1

wj bj (5.44)

with b the n-dimensional ordered vector whose jth component is the jth

largest of the arguments ai and w the n-dimensional weighting vector

such that wj = µ(H(j)) − µ(H(j−1)) for all j ∈ {1,2, . . . , n} with H(j) the

subset of criteria with the jth highest evaluation values and H(0) = ∅. It is

important to note that due to the required ordering both b and w change

as the evaluations of the criteria change.

With the above notations and using the generalized possibility measure,

the weights can be calculated in function of the fuzzy measure values of

the singletons as [180],

wj = Sji=1(ei)− S
j−1
i=1 (ei) (5.45)

In case of the basic possibility measure where S = SM , this reduces to

wj = max(ej −
j−1
∑

i=1

wi,0) (5.46)

To optimize a Choquet integral model based on a generalized possibil-

ity measure with a GA, every fuzzy measure value of a singleton must be

represented as part of an individual in the GA population. In the noise an-

noyance accumulation model, a fuzzy measure value of a singleton µ({rs}),
s ∈ {1,2, . . . , S}, will be coded as a real-valued gene in the interval [0,1]. An

individual then consists of S such genes, one for each annoyance source.

In the search process of the GA, a uniform crossover and self-adaptive mu-

tation step operator have been used [67]. To ensure correct normalization

of the generalized possibility measure, it is verified whether at least one of

the genes has a value of 1. If this is not the case, a randomly selected gene

is set to 1. Alternatively, the genes could be rescaled to make sure that the

largest element is 1.

3.2.3 k-maxitive Sugeno integrals

It has been observed that the noise accumulation problem has a strong

modeling affection with the maximum operator. In literature, it is known

that the Sugeno integral fits perfectly with the class of k-maxitive fuzzy
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measures [31]. Hence, it is worthwhile to investigate this class of measures

and the combination with the Sugeno integral in more detail. We start

with an introduction to these measures, based on the possibilistic Möbius

transform representation.

Definition 59 (Possibilistic Möbius transform [118]). The possibilistic Möbius

transform of a set function (not necessarily a fuzzy measure) µ on U is the

set function m∨ : P(U)→ [0,1] defined by

m∨(A) =






µ(A) if µ(A) > maxB⊂A µ(B)

0 otherwise.
(5.47)

for all A ∈ P(U).
Definition 60 (Possibilistic Zeta transform [118]). The possibilistic Zeta

transform of a set function m on U is the set function Z∨m : P(U) → [0,1]

defined by

Z∨m(A) = max
B⊆A

m∨(B) (5.48)

for all A ∈ P(U).
The possibilisitic Möbius and Zeta transforms are each others inverse,

so when the possibilistic Zeta transform is applied to m∨ the original set

function µ is recovered. However, not every set function m∨ is the possi-

bilistic Möbius representation of a fuzzy measure, but there exist necessary

and sufficient conditions as shown in theorem 5.

Theorem 5. [45] A set functionm∨ : P(U)→ [0,1] is the possibilistic Möbius

transform of a fuzzy measure µ on U if and only if

(i) Boundary condition: m∨(∅) = 0

(ii) Normalization: maxA⊆Xm∨(A) = 1

(iii) Monotonicity: (∀A ∈ P(U))(m∨(A) ≤ maxB⊂Am∨(B)⇒m∨(A) = 0)

The special class of k-maxitive measures can easily be defined using the

possibilistic Möbius representation.

Definition 61 (k-Maxitive measure [118]). Let k ∈ {1,2, . . . , n} and A ∈
P(U). A fuzzy measure µ on U is called k-maxitive if its possibilistic Möbius

transform satisfies m∨(A) = 0 whenever |A| > k and there exists at least

one subset B of U such that |B| = k and m∨(B) 6= 0.

Note that possibility measures are in fact 1-maxitive measures.

The Sugeno integral w.r.t. a k-maxitive measure will be shortly referred

to as a k-maxitive Sugeno integral . A k-maxitive Sugeno integral Sµ(f ) can
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be written as a function of the possibilistic Möbius representation m∨ of

µ [113].

Sµ(f ) = max
A⊆U

min



m∨(A),
∧

i∈A
f(ui)



 . (5.49)

It is important to note that (5.49) does not require the reordering of the

arguments.

Let us now consider the optimization of a k-maxitive measure with a GA.

Because of the alternative representation of a fuzzy measure, the number of

parameters is
∑k
i=1

(

n
i

)

[30], as in the case of k-additive measures. Although

this number is considerably lower than the 2n − 2 parameters which are

required for a full specification of a fuzzy measure, for high n this number

remains quite high. Therefore, the optimization of a k-maxitive measure

for the noise annoyance accumulation model will be limited to k = 2.

A genetic algorithm makes a distinction between genotype, the internal

representation of an individual in the genetic algorithm, and its phenotype,

how the individual looks like in its external context (see appendix A). A

genome represents the genotype of a k-maxitive measure. For each A ∈
P(U) the genome contains a single real-valued gene in the interval [0,1].

For 2-maxitive measures, there are genes gr corresponding to a singleton

{ur} and genes gpq corresponding to a doubleton {up, uq}with p 6= q, and

p,q, r ∈ {1, . . . , n}. The phenotype of the maxitive measure is calculated

using the following formulas.

m∨({ur}) = gr (5.50)

m∨({up, uq}) =






m̄+ (1− m̄)gpq if gpq 6= 0

0 if gpq = 0
(5.51)

where m̄ = max
(

m∨({up}),m∨({uq})
)

. By using this representation of

an individual, the monotonicity constraint for possibilistic Möbius coeffi-

cients is always satisfied. To ensure the normalization requirement, the

phenotype is divided by the maximum of all m∨ values. The normalized

phenotype is then coded back into the genotype. This guarantees only nor-

malized individuals in the population, which raises the chances for sensi-

ble exchanges of genes. Using the above procedure, the GA only explores

meaningful fuzzy measures that obey the conditions of theorem 5. Fur-

thermore, the GA uses a uniform crossover and self-adaptive mutation op-

erator [67].
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3.3 Other approaches for learning fuzzy measures

In the MCDM approach to model noise annoyance accumulation, the fuzzy

measure has been identified with a GA. However, there are also other meth-

ods for this identification process. In [135] Roubens has introduced the

TOMASO (Technique for Ordinal Multi-Attribute Sorting and Ordering) me-

thod (see also [119] for some extensions). The TOMASO approach calcu-

lates a classifying k-additive Choquet integral (with k a system parameter).

The constraints imposed by the monotonicity and the data sample are lin-

earized and the Möbius coefficients are determined by solving a linear pro-

gram that minimizes an error function. Yet, if the quality of the data set is

bad, the linear program has no solution, in which case the fuzzy measure

has to be identified using a quadratic program. In [126] the identification

of a fuzzy measure is expressed as a quadratic problem using fractal and

cardinality transformations.

However, these methods have some disadvantages for our noise annoy-

ance accumulation modeling.

• As the annoyance aggregation is rather maxitive than additive, a k-

additive representation of the optimal fuzzy measure requires a high

k, especially when the number of sources is high. Because of this, the

number of coefficients can be very high, which poses representation

problems in computer implementations.

• The systems of inequalities have difficulties to deal with data inconsis-

tencies such as doubt and reversed preference. Unfortunately these

inconsistencies occur very often in noise annoyance data from social

surveys.

In [119] the TOMASO method is applied to a small and consistent sample

of the noise annoyance accumulation problem.

4 Other fuzzy accumulation models

Besides the fuzzy rule base and the MCDM approaches that have been stud-

ied in this chapter, other methodologies may be used to identify classifica-

tion models.

Artificial neural networks (ANN) have a long history as classifier sys-

tems. A neural network tries to imitate the human brain in order to sim-

ulate the learning behavior of humans, and is mainly used for data pre-

diction, classification and clustering. Because of their biologically inspired

underpinnings and their inherent tolerance for imprecision, they are also
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recognized as an integral part of the technologies that are collectively re-

ferred to as soft computing techniques. In fact, the combination of fuzzy

set theory and neural networks has recently given rise to the fruitful field

of neuro-fuzzy computing [87]. In [47] a neuro-fuzzy classifier for annoy-

ance accumulation has been constructed and various network topologies

have been compared. A disadvantage of neural networks in general, is the

fact that they are black box models. The knowledge of the neural network

is hidden in the interconnections between the neurons and the weights at-

tached to these interconnections. However, these weights do not have a

clear semantical interpretation, contrary to a fuzzy measure.

In [33], Cao-Van has introduced the OSDL (Ordinal Stochastic Domi-

nance Learner) method. This ordered classification algorithm uses the avail-

able data set to extract a weak stochastic dominance relation based on the

cumulative distribution functions. This process requires a few iterations

over the complete data set in order to optimize a system parameter, and

one iteration over the whole data set to classify a new data record. There-

fore, the algorithm does not scale very well for large data sets.

5 Related applications

In this chapter, the experienced annoyance levels of several sources have

been aggregated into a single, global annoyance level. But this aggrega-

tion does not need to stop there. The evaluations of the global annoy-

ance caused by noise and odor, and possibly also other factors such as a

general feeling of safety in the neighborhood, leisure possibilities, health

conditions,... can be aggregated into a global “quality of life” variable. Be-

cause of the many similarities with the accumulation of noise annoyance,

the presented techniques can also be useful for this aggregation.

An important complication that typically arises in this context, is the

handling of bipolar scales. A bipolar scale is a scale which allows positive

and negative evaluations (with a neutral evaluation in between), e.g. the

quality of life is “good” or the quality of life is “very bad”. Fortunately, it is

possible to extend the notion of a fuzzy measure (and the associated fuzzy

integrals) to bipolar scales, resulting in bipolar fuzzy measures, bipolar

Choquet integrals and bipolar Sugeno integrals [77].



Chapter6

Modeling results

No one knows what power lies yet undeveloped in that wiry

system of mine.

Ada Lovelace (1815-52)

First computer programmer

1 Introduction

So far, we have described the goals (and associated challenges) of this work

in the domain of noise annoyance modeling (chapter 1) and the mathemat-

ical tools at our disposal (chapter 2). This has enabled us to construct an

accurate representation of the central annoyance concept (chapter 3) and

to develop a framework that is capable of modeling noise annoyance from

the state of the environment to the perception of accumulated noise an-

noyance (chapters 4 and 5). Finally, the time has come to fill the framework

with expert knowledge, including hypotheses that are under investigation,

and to feed the system with data. To optimize the weights of the rules and

to validate the reasoning processes of the framework, a data set containing

the reported noise annoyance can be used.

Two data sets obtained from social surveys have been acquired for this

purpose. The first data set resulted from an investigation conducted in

Austria.1 The second one was collected in Flanders (Belgium). In this

chapter, these surveys will first be described in more detail. The full text

of both surveys in the original language (German and Dutch respectively)

can be found in appendix C. After an introduction to the available data,

some results obtained with the framework (after optimization) are dis-

1Thanks to Prof. Peter Lercher for providing this data set.

151



152 MODELING RESULTS

cussed. Several factors identified in the general conceptual noise annoy-

ance model as presented in chapter 4, section 2.1, have been investigated.

Note that most of the results have already been published in international

journals [18] [25] [26] and conferences [17] [22] [23] [24] [15] [158] [159]

[160] [163] and [164].

Remark that all results have been obtained while the proposed frame-

work was under continuous development and modification. Changes to

the modeling framework were driven by the observations made during the

research on various factors influencing the experience of noise annoyance.

Therefore, some results are based on earlier incarnations of the framework.

In the text, it will be clearly stated when such older techniques have been

used to produce the described results.

2 Surveys

2.1 Austrian survey

2.1.1 Overview

A representative phone survey was conducted within an ongoing envi-

ronmental health impact assessment of a new rail track in the Austrian

part of the Alps near Innsbruck, which covers an area of about 40 km.

This mainly rural area consists of small towns and villages with a mix of

industrial, small business and agricultural activities. The primary noise

sources are road and railway traffic. In total, 2007 inhabitants were in-

terviewed. The standardized interview (typical length 20 minutes) cov-

ered socio-demographic data, housing, satisfaction with public services

and the environment, general annoyance, interference, coping with noise

and health. The overall response was 83 %. Subjects were selected using a

Geographical Information System (GIS). Initially, 1500 inhabitants (aged 18

to 75) were sampled at random from the whole Inn-valley area (sample 1).

This sample was enriched by another random sampling of 500 residents

living within 150 m of the existing railway track and the highway, or within

50 m of local roads (sample 2) to guarantee a sufficient number of people

with higher exposure to noise and vibrations. Noise exposure was assessed

first by modeling (Soundplan) according to Austrian guidelines (ÖAL Nr

28+30, ÖNORM S 5011). Afterwards the modeled data has been calibrated

and corrected based on the recordings of 31 measuring stations. Based on

both data sources approximate day-night levels (Ldn) were calculated for

each respondent to simplify comparison with typical dose-response data.



Surveys 153

For a more detailed description of the Austrian data set, the reader is re-

ferred to [109] and appendix C for the full German text of the survey.

2.1.2 Annoyance questions

For our purposes, the two most important questions are those of which the

answer can be used as a modeling target by our noise annoyance advisor:

the questions on noise annoyance caused by road traffic (question 15) and

railway traffic (question 17). The wording of the questions is in overall

agreement with the international guidelines proposed by the ICBEN team

in [65].

Because there was no question on total, accumulated annoyance, this

data set can only be used to validate the model for road and railway traffic

annoyance specifically.

2.1.3 Representing the annoyance terms

The questionnaire used a four point scale for the annoyance questions:

“überhaupt nicht gestört”, “gering oder teilweise gestört”, “mittelmäßig

gestört” and “stark oder erheblich gestört”. For the convenience of the

reader, table 6.1 shows how these terms can be approximately translated

in English using the fuzzy translation tool that has been developed in chap-

ter 3, section 4. When discussing results, the bold English terms will be

used instead of the German terms to refer to the four point scale of the

Austrian data set.

Table 6.1: Translations of German modifiers into English (including the

similarity degree of the terms).

German English

überhaupt nicht not at all (0.93)

teilweise fairly (0.74), partially (0.72), somewhat (0.70)

mittelmäßig moderately (0.74)

stark strongly (0.76), highly (0.73), very (0.73)

erheblich strongly (0.79), highly (0.72), very (0.72)

The German modifier “gering” was not included in the International An-

noyance Scaling Study [65], so no reliable data is available to represent this

term. Therefore, we opted to stick to the term “teilweise” for the second

label. A closer look at the terms “stark” and “erheblich” revealed that they
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are quite similar in meaning. Configured to “translate” from German into

German, the fuzzy translation tool reports a similarity of 0.72 between

them. Their high similarity was in fact already noticeable from the similar

English translations of both. Therefore, only the term “erheblich” has been

selected as the fourth annoyance label.

Unfortunately, the labels of the four point scale that have been used in

the survey do not correspond well with the German terms that were pro-

posed by the ICBEN team (“überhaupt nicht”, “teilweise”, “beträchtlich” and

“total”) [65]. Although the first two labels of the categories do match, the

similarity between “beträchtlich”–“mittelmäßig” and “total”–“erheblich” was

reported as low as 0.21 and 0.27 respectively by the translation tool. A

rather poor match.

The representation of the German modifiers to be used in the noise an-

noyance advisor has been constructed with the fixed overlap method as dis-

cussed in chapter 3, section 3.3.3. However, after summation of the individ-

ual curves, a symmetric Gaussian shape has been fitted, AgaussE(.;µ,σ ,σ),

instead of an asymmetric Gaussian shape as preferred. The resulting fuzzy

sets are shown in figure 6.1.

Because of the poor choice of terms compared with the International

guidelines, the fuzzy sets of the second and third label are very close and

do overlap a lot. They have been slightly modified. The representation of

“mittelmäßig” was made a bit more wide and both terms, “teilweise” and

“mittelmäßig”, were moved a little further from each other. Justification of

these minor adaptations can be found in the experiment and observations

of Rohrmann: people tend to divide a scale equidistantly (see chapter 3,

section 1).

2.2 Flemish survey

2.2.1 Overview

A social survey was conducted with 3200 people in Flanders, Belgium. The

general topic of the survey was the influence of odor, noise and too much

light on the living environment. The survey was presented as such to the

subjects. Selection of subjects was done in two stages. In a first stage,

households were randomly selected. The member of each selected house-

hold aged above 16 that had its birthday coming up first, was contacted by

telephone, convincing him or her to participate in the study. This process

was repeated, making sure that the sample was representative of the demo-

graphic factors age, gender, and province. The selected subjects were then

sent the questionnaire by mail. They were reminded to participate in the
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Figure 6.1: Representation of the four German annoyance terms (“über-

haupt nicht”, “teilweise”, “mittelmäßig”, “erheblich”). The original curves

for “teilweise” and “mittelmäßig” are dashed.

survey after 3 weeks by telephone, if they did not send the questionnaire

back promptly. Finally, 64 % of the questionnaires sent out were received.

The survey was part of the Investigation of the Environmental Living

Quality performed on behalf of the Flemish Environmental Administration

(AMINAL) by Deloitte & Touche and M.A.S. See appendix C for the full Dutch

text of the survey.

The respondents who had freely given their address, were located on

a GIS (1749 respondents could be localized successfully). Road and rail-

way traffic noise levels were calculated for these respondent’s home. Exact

railway traffic data and average noise emission of each type of train, were

used. For road traffic on major roads, simulated traffic intensity validated

by results of several hundreds of counting stations, were used. For the

local roads, an estimate of surface traffic for each geographic zone was

made. The car and truck emission is taken from the recent revision of the

Dutch guideline [4] and propagation is calculated according to ISO 9613.

Additionally, distances to the nearest road and railway, and land use data,

were added, based on maps and associated data available in the GIS.

2.2.2 Annoyance questions

The most important questions are the general noise annoyance question

(I.3) and the questions concerning noise annoyance by particular sources

(II.1, III.1 and IV.1). The general noise annoyance question appears on the

first page of the questionnaire and is preceded by two questions only [80].

The first one inquires about the general appreciation of the living environ-
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ment. The second one asks whether the subject would stimulate a friend

to live in this neighborhood and why (not). The general noise annoyance

question then appears in a group of three questions concerning noise, odor

and light in that order. The formulation of the question is in overall agree-

ment with the ICBEN recommendation put forward in [65]. The subjects

are asked to answer this question using a five point categorical scale. The

question concerning noise annoyance by particular sources follows on the

third page, the second page being devoted to coping, change in situation,

and description of the living environment. With this arrangement, subjects

do not see the detailed list while answering the total annoyance question,

unless they turn back to the first page after reading the third one. A small

pre-study learned that the majority of subjects tends to fill in the writ-

ten questionnaire from beginning to end without ever returning to previ-

ously answered questions. The detailed annoyance questions show a list of

sources: road traffic, air traffic, railway traffic, etc. For reasons beyond our

control, the list contains a few very specific sources that are not expected to

cause much annoyance. At the end of the list of named sources of noise an-

noyance, the possibility was given to the subjects to add additional sources

also rating them on a five point annoyance scale.

Although this data set contains rather limited useful information for

the modeling of a specific type of noise source, the combination with the

data extracted from a GIS, allows to investigate aspects not available in the

Austrian data set, such as land use variables. However, this data set will be

primarily used for the modeling of accumulated noise annoyance and for

testing independence of language and region.

2.2.3 Representing the annoyance terms

The five point scale used in the Flemish survey was labeled “helemaal niet

gehinderd”, “een beetje gehinderd”, “tamelijk gehinderd”, “ernstig gehin-

derd” and “extreem gehinderd”. For the convenience of the reader, the

best English translations of these Dutch linguistic terms as calculated by

the fuzzy translation tool, are shown in table 6.2. When discussing results,

the bold English terms will be used to refer to the five point scale of the

Flemish survey.

The representation of the five Dutch terms has been constructed with

the fixed degree of overlap method as described in chapter 3, section 3.3.3.

The results of this process, fitted with an asymmetric Gaussian curve,

AgaussE(.;µ,σ , δ), are shown in figure 6.2. In fact, the choice of terms

does not completely correspond to the scale proposed by the ICBEN team:

“helemaal niet”, “een beetje”, “matig”, “erg”, “extreem”. However, the sim-
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Table 6.2: Translations of Dutch modifiers into English (including the sim-

ilarity degree of the terms).

Dutch English

helemaal niet not at all (0.93)

een beetje slightly (0.85)

tamelijk fairly (0.85), somewhat (0.83)

ernstig strongly (0.87), highly (0.80), very (0.73)

extreem extremely (0.70)

ilarity degree between the proposed terms and those that have been used,

“tamelijk”–“matig” and “ernstig”–“erg” turned out to be quite high, 0.71

and 0.73 respectively. Hence, no modifications to the modeled terms were

necessary.
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Figure 6.2: Representation of the five Dutch annoyance terms (“helemaal

niet”, “een beetje”, “tamelijk”, “ernstig”, “extreem”).

3 Traffic noise annoyance advisor

3.1 Introduction

In this section, the application of the noise annoyance advisor framework

for the modeling of road and railway traffic noise annoyance, will be inves-

tigated in detail.
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First, global best performance results are given. Once for the crisp op-

timization scheme (see chapter 4, section 2.4–2.5) on the Austrian data

set, and once for the fuzzy optimization scheme on the Flemish data set.

Thereafter, various aspects of the framework that have already been dis-

cussed theoretically, will be verified in practice (inference scheme, gener-

ality). Finally, the knowledge in the rule base is analyzed more thoroughly.

Interactions between variables, and the investigated rule hypotheses are

discussed.

All rules included in the noise annoyance advisor were formulated by

experts in the field of acoustics, based on the knowledge and hypotheses

available in literature. They are an instantiation of the conceptual annoy-

ance model described in chapter 4, section 2.1.

Unless otherwise stated, all results have been calculated with the (faster)

possibility qualifying rule inference scheme (see chapter 4, section 5).

3.2 Analyzing crisp optimized results

Focus is first on the results of the noise annoyance advisor after optimiza-

tion for the modeling of road traffic noise annoyance and railway traffic

noise annoyance, based on the Austrian data set. The model was opti-

mized with the “crisp quality measure” and the associated crisp error mea-

sure (see chapter 4, section 2.4–2.5). This means that the output of the

model is a single linguistic term, the term from the term set of the survey

which best approximates the annoyance possibility distribution as calcu-

lated by the inference engine. For the linguistic approximation, the upper

approximate descriptor was used (see chapter 4, section 2.2.4). The single

output term is useful to compare the result with other crisp models, such

as linear regression techniques. Because the objective is a high weighted

percentage of correctly predicted noise annoyance responses, theα param-

eter was chosen high. This forces the model to few misses at the expense

of lower specificity. The results presented here have already been reported

in [27].

If no knowledge is available on the subjects taking part in the survey,

the (weighted) number of correct predictions is 25 % because the Austrian

data set uses an annoyance scale with four linguistic terms. Traditionally

a linear relation between reported level of annoyance and DNL is often

assumed. If such a linear relation is fitted to the noise annoyance data at

hand, 30.2 % of the responses are predicted correctly for railway noise and

29.5 % for road noise, assuming a uniform distribution of the annoyance

labels on a numerical scale. This means that DNL explains only a very small

part of individual annoyance variations, when used in a traditional way. In



Traffic noise annoyance advisor 159

fact, this corresponds well to the observation in literature stating that noise

exposure can only explain about 30 % of the noise annoyance [144]. Note

that the definition of (weighted) correct prediction includes all four levels

of annoyance: “not at all”, “fairly”, “moderately” and “strongly”.

When variables reported by the subjects of a noise annoyance survey

are included in the model one must be very careful when analyzing perfor-

mance. Indeed, if an answer includes a certain degree of subjectivity, one

may as well be sampling an underlying variable also contributing to the an-

swer on the annoyance question. Therefore, a distinction is made between

variables that can be measured without the cooperation of the subject and

variables that require information that can only be provided by the subject.

The model could be extended with more knowledge in order to model these

variables “from scratch” (see section 3.6).

Table 6.3: Crisp optimization performance on the Austrian data set.

Model Road Railway

Linear regression on DNL 29.5 % 30.2 %

Fuzzy advisor / no subjective input 41.1 % 43.8 %

Multivariate / no subjective input 36.8 % 37.0 %

Fuzzy advisor / subjective input 43.0 % 45.3 %

Multivariate / subjective input 40.0 % 38.6 %

Table 6.3 summarizes results. The label “no subjective input” refers

to the situation where all input to the model can be measured objectively.

When the label “subjective input” is used, additional rules rely on data ob-

tained by inquiring the subjects (e.g. sensitivity to noise). Also in this case,

variables that correlate in a trivial way to the reported noise annoyance

(e.g. speech disturbance) are carefully omitted. The table also includes the

results of a multivariate linear regression based on the same input vari-

ables. The fuzzy noise annoyance advisor always performs better than

the regression models. Additionally, the interpretability of the linguistic

rules is much more straightforward. This is a very important benefit of

the fuzzy approach over blind techniques, because it allows to really gain

insight in the underlying relations between the variables. It also allows the

incorporation of information from literature.

In table 6.4 an overview is given of all rules included in the model. The

table also lists the definitions of the antecedents and the consequents used

in the rules. See chapter 2, section 2.3 for the definition of the membership

functions that appear in the table. These membership functions have not
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been optimized they were defined by experts based on available knowledge

and intuition. Most of the universes and the associated linguistic terms are

defined in a rather ad hoc way. The consequences on the annoyance scale

have not been limited to the linguistic terms that were used in the survey, or

that are available in the International Annoyance Scaling Study. Although

this could have been done, it would have restricted the expressiveness of

the rules. There is not necessarily a perfect match between the contents of

the model and the linguistic expression of the rule, which is only for conve-

nience. However, it is important that the correct fuzzy set representation

of the linguistic terms in the survey is used for the linguistic approxima-

tion of the fuzzy inference result. Note that the same definitions of terms

have also been used on the sensitivity scale.

Table 6.4: Overview of fuzzy rules for the Austrian data set. Used abbre-

viations: “at least” (at l.).

Nr Label Definition Label Definition

If Ldn noise exposure (dBA) Then annoyance

A1 very low Lin(40,50) not at all norm(SE(2.59,2.70))

A2 low Tri(40,50,60) fairly AgaussE(2.5,1.3,1.3)

A3 high Tri(50,60,70) moderately AgaussE(5.4,1.2,1.2)

A4 very high Lin(60,80) strongly norm(SE(11.10,1.60))

If distance to source (m) Then annoyance

A5 close Lin(0,390) at l. somewhat S(0,4)

A6 far Lin(1050,1950) not high S(5,10)

If living room window faces Then annoyance

A7 source Enum(road/rail) high S(2,8)

A8 quiet Enum(quiet) not very high S(8,10)

If bedroom window faces Then annoyance

A9 source Enum(road/rail) high S(2,8)

A10 quiet Enum(quiet) not very high S(8,10)

If Ldn,rail −Ldn,road (dB) Then annoyance

A11 low Lin(3,6) not high S(4,7)

If Ldn masker (dB) Then annoyance

A12 high S(48,62) not very high S(7,9)

If distance to masker (m) Then annoyance

A13 close S(0,300) not very high S(8,9)

If living room window faces Then annoyance

A14 masker Enum(–/road) not very high S(8,10)

If bedroom window faces Then annoyance

A15 masker Enum(–/road) not very high S(8,10)
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Table 6.4 (continued)

Nr Label Definition Label Definition

If sensitivity to noise Then annoyance

A16 strongly norm(SE(11.10,1.60)) at l. somewhat norm(SE(2.59,2.70))

A17 not at all norm(SE(2.59,2.70)) not strongly norm(SE(11.10,1.60))

If context elasticity Then annoyance

A18 high S(7,10) below average S(4,8)

A19 low S(2,6) at l. somewhat S(1,5)

If health Then annoyance

A20 very good S(7,10) not high S(7,9)

A21 poor S(2,6) at l. somewhat S(1,5)

If age (years) Then annoyance

A22 young Lin(20,30) below average S(4,10)

A23 middle Trap(20,30,50,60) at l. somewhat S(0,6)

A24 old Lin(50,60) below average S(4,10)

If gender Then annoyance

A25 male Enum(1,0) above average S(0,4)

A26 female Enum(0,1) at l. somewhat norm(SE(2.59,2.70))

If nr of children Then annoyance

A27 none Lin(0,2) not high S(2,10)

A28 few Tri(0,1,4) high S(3,9)

A29 many Lin(2,5) not high S(3,9)

If crowding Then annoyance

A30 few Lin(1,4) below moderate S(2,8)

A31 many Lin(1,8) high S(4,10)

3.3 Analyzing fuzzy optimized results

Turning our attention to the Flemish data set for the modeling of road

traffic annoyance, the achieved results will be used to illustrate the effect

of the parameter α in the fuzzy quality measure approach. These results

have already been reported in [26].

With the “fuzzy quality measure” and the associated error measure

(see chapter 4, section 2.4–2.5), the fuzziness and the uncertainty of the an-

noyance outcome is fully exploited. The linguistic approximation from the

annoyance possibility distribution to each of the linguistic terms from the

survey, was performed with the “lower approximate descriptor” (see chap-

ter 4, section 2.2.4). Note that the Flemish data set distinguishes five lin-

guistic annoyance terms, “not at all”, “slightly”, “fairly”, “strongly” and

“extremely”. Recall from chapter 4, section 2.5 that the parameter α can

be used to obtain a model that is not incorrect (in a fuzzy sense) but rather

non-specific (high α) or is usually specific but at the price of more misses
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(low α). The effect of the parameter α can be seen on figure 6.3.
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Figure 6.3: Distribution of the subjects over a false negative versus non-

specificity plane for a model tuned with α = 0.75 (left) and α = 0.99 (right).

The area of the bubbles is proportional to the number of subjects.

Table 6.5: Percentage of subjects responding different noise annoyance in

two of the clusters from the left figure 6.3.

Label Population High FN No FN

not at all 39 % 3 % 94 %

slightly 31 % 11 % 0 %

fairly 17 % 69 % 0 %

strongly 11 % 17 % 0 %

extremely 2 % 0 % 6 %

Nr of subjects 2472 379 890

The figure on the left shows the results of a model that is more precise,

but often incorrect. The right figure shows the results of a model that is

more fuzzy (has on the average more uncertainty in its output) but less

often excludes the label chosen by the subject from its prediction. The

area of the bubbles in these figures is proportional to the number of sub-

jects in each category formed by a combination of non-specificity and false

negative. To illustrate more clearly the effect of tuning, the two clusters

emerging in the left figure are further analyzed. In table 6.5 the percentage

of respondents in each of the five annoyance categories is given for the

cluster with approximately zero false negative (“no FN” cluster) and for the
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cluster with moderate non-specificity and rather high false negative (“high

FN” cluster). A combination of low non-specificity and no false negative, is

obtained only when predicting no annoyance at all or extreme annoyance.

High false negative is more often found in combination with non-specificity

when predicting the middle noise annoyance categories. This result is not

unexpected. Also for the human expert it is easier to be specific when pre-

dicting the extremes of the annoyance scale, while it is rather difficult to

differentiate situations that can go either way.

The road traffic annoyance model that has been tuned here, included

rules on DNL, distance to roads, urbanization degree, reported traffic den-

sity, household size, age and gender (see table 6.6).

Table 6.6: Overview of fuzzy rules for the Flemish data set. Used abbrevi-

ations: “at least” (at l.).

Nr Label Definition Label Definition

If Ldn noise exposure (dBA) Then annoyance

F1 very low Lin(52.5,60) not at all norm(SE(1.05,3.78))

F2 low Tri(52.5,57.5,65) slightly AgaussE(1.29,0.46,1.25)

F3 moderate Tri(57.5,65,70) moderately AgaussE(4.04,1.32,1.53)

F4 high Tri(65,70,75) very AgaussE(7.80,1.22,0.94)

F5 very high Lin(70,75) extreme norm(SE(25.98,2.75))

If distance to highway (m) Then annoyance

F6 close Lin(500,1500) high S(5,7.5)

F7 far Lin(500,1500) not high S(3.5,7.5)

If dist. to main road (m) Then annoyance

F8 close Lin(200,600) high S(5,7.5)

F9 far Lin(200,600) not high S(3.5,7.5)

If dist. to through road (m) Then annoyance

F10 close Lin(60,250) high S(5,7.5)

F11 far Lin(60,250) not high S(3.5,7.5)

If age (years) Then annoyance

F12 young Lin(20,30) below average S(4,10)

F13 middle Trap(20,30,50,60) at l. somewhat S(0,6)

F14 old Lin(50,60) below average S(4,10)

If gender Then annoyance

F15 male Enum(1,0) above average S(0,4)

F16 female Enum(0,1) at l. somewhat norm(SE(2.59,2.70))

If size of household Then annoyance

F17 small Lin(1,3) not high S(2,10)

F18 middle Tri(1,3,5) high S(3,9)
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Table 6.6 (continued)

Nr Label Definition Label Definition

F19 big Lin(3,5) not high S(3,9)

If urbanization Then annoyance

F20 country Enum(0,0,0,1) low S(1,8,5.8)

F21 suburb Enum(0,0,1,0) below mod. S(2.2,6.6)

F22 city Enum(0,1,0,0) above mod. S(2.2,7)

F23 center Enum(1,0,0,0) above mod. S(3,6.2)

If traffic amount Then annoyance

F24 very much Enum(1,0,0,0,0) high S(5,6.6)

F25 much Enum(0,1,0,0,0) above mod. S(3,5)

F26 few Enum(0,0,0,1,0) below mod. S(3,4.5)

F27 very few Enum(0,0,0,0,1) not high S(2,3.5)

3.4 Analyzing inference scheme impact

It has been stated in chapter 4, section 5, that the execution speed of the

proposed framework with certainty qualifying fuzzy rules is rather low for

practical purposes. Especially when the model is under optimization and a

large number of model evaluations are required by the GA. Therefore, the

inference scheme of the fuzzy rules was switched to the much faster Mam-

dani controller algorithm for possibility qualifying fuzzy rules. The impact

of this change is investigated here. The obtained results have already been

presented in [165].

The noise annoyance advisor was configured with the crisp optimization

measures, using the upper approximate descriptor for linguistic approxi-

mation to the single crisp term that results as output. It was optimized

against the Austrian data set and included the following 20 rules in its rule

base (see table 6.4): exposure (A1)–(A4), distance to source (A5)–(A6), living

room and bedroom windows facing side (A7)–(A10), masking (A11)–(A15),

sensitivity to noise (A16)–(A17) and age (A23)–(A25).

A performance comparison was made between the use of the certainty

qualifying rule inference scheme (with the Kleene-Dienes implicator) and

the possibility qualifying rule inference scheme (with the minimum t-norm)

after optimization of the model. The rules itself were not reformulated or

modified, except for the modifications to the rule consequents due to the

attached (and optimized) certainty degrees.

The achieved (crisp) performance with the Kleene-Dienes implicator was

40.8 % (weighted) correct predictions and 40.0 % with the minimum t-norm.

So although the certainty qualifying rules perform slightly better, the dif-

ference is only very small. Yet, the average gain in speed was a factor 5

(6.98 ms versus 1.49 ms). The Kleene-Dienes inference scheme with the
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certainty degrees of the rules applied to the rule result (instead of the rule

consequents) was a factor 3 faster (2.49 ms), giving the same prediction

performance. Apparently, the optimization process compensates the cer-

tainty degrees attached to possibility qualifying rules versus the certainty

degrees attached to certainty qualifying rules. However, it is important to

remark that the use of possibility qualifying rules loses the causality re-

lation explicitly expressed by the implicator used in certainty qualifying

rules. Hence, the possibility qualifying inference scheme can not be used

to investigate the direction of causality between the variables in the rules.

3.5 Analyzing the generality of the model

The knowledge incorporated in the noise annoyance advisor is not ex-

tracted from data but proposed, as a kind of hypotheses by the experts,

based on literature. Tuning involves only modifying the certainty degree

of each rule. Nevertheless overfitting on a particular data set cannot be

completely excluded. To find out exactly how general the noise annoyance

advisor is, the performance of railway noise annoyance prediction on the

Flemish and Austrian data sets is compared (after it is tuned to one of the

data sets).

Before it is possible to test a model on two different data sets, some

problems related to the comparison of surveys must be resolved. In chap-

ter 3, section 1, six difficult issues associated with the comparison of two

surveys were identified. Three of them are directly related to the use of

linguistic terms in the surveys: the language can be different, the termi-

nology or the meaning of the linguistic terms can be different and finally,

the number of categories on the scale can be different (four point scale

versus five point scale). Note that all three problems arise in the Austrian

and Flemish surveys. Fortunately, they can all be handled very well by the

fuzzy noise annoyance advisor (taking into account that only the meaning

of terms on a single dimension is considered here). This is because any

term in any language can be accurately represented in a uniform way, as a

fuzzy set on the same universe H ([0,10]). The fourth complication is due

to the phrasing of the questions. As both the Flemish and Austrian surveys

follow the international guidelines proposed by the ICBEN team, this is not

an issue here. Furthermore, the survey results can be culture dependent

(response behavior of the subjects) and survey dependent (presentation of

the survey to the subjects). The noise annoyance advisor should be capable

of handling these dependencies, at least if appropriate rules can be formu-

lated to take them into account. However, such rules are not implemented

here.
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3.5.1 Crisp analysis

To demonstrate the language independence, a noise annoyance advisor

containing the seven rules shown in table 6.7 was constructed, configured

with the crisp quality measures. For the linguistic approximation to the

single best matching term of the survey, the similarity measure as defined

in the translation tool (see chapter 3, section 4.2) has been used. It is for

two fuzzy sets A,B ∈ F(U), given by,

Sim(A, B) = TM(C1(A, B),SM(ETW (A, B), C2(A, B))) (6.1)

with

C1(A, B) = supu∈U TM(A(u), B(u))
supu∈U SM(A(u), B(u))

(6.2)

C2(A, B) =
∑

u∈U TM(A(u), B(u))
∑

u∈U SM(A(u), B(u))
(6.3)

ET (A, B) = T
(

inf
u∈U

IT (A(u), B(u)), inf
u∈U

IT (B(u),A(u))
)

(6.4)

After optimization of the model on the Flemish data set, the perfor-

mance of the model was 37.14 %, expressed as (weighted) percentage of

correct predictions. When the same model with the same certainty degrees

attached to the rules was run on the Austrian data set with linguistic ap-

proximation to the four German terms, performance was 37.13 %.

Table 6.7: Overview of fuzzy rules to test the language independence of a

model. Used abbreviations: “at least” (at l.).

If Ldn noise exposure (dBA) Then annoyance

T1 very low Lin(50,50) very low Lin(0,1.2))

T2 low Tri(42,50,58) low Tri(0,1.8,4.2)

T3 moderate Tri(50,58,66) moderately Tri(1.8,4.2,7)

T4 high Tri(58,66,74) high Tri(4.2,7,8.5)

T5 very high Lin(66,74) very high Lin(7,8.8))

If distance to railway (m) Then annoyance

T6 close Lin(0,390) at l. somewhat S(0,4)

T7 far Lin(1050,1950) not high S(5,10)

To test the influence of the shape of the fuzzy sets representing the Ger-

man terms, they were changed to four equidistant triangular shaped fuzzy

sets. The same model was run with linguistic approximation to the newly

defined fuzzy sets. The performance on the Austrian data set dropped to
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34.07 %. When the same model was run on the Flemish data set with ap-

proximation to five equidistant triangular shaped fuzzy sets, the obtained

performance was 34.03 %.

In another experiment, fuzzy set representations for the German and

Dutch terms constructed with the Klir probability-possibility transformation

method (see chapter 3, section 3.2) were used. The model outcome on

the universe [0,10] was aggregated to match the discretized distribution

intervals and approximated to these fuzzy sets, using the same similarity

measure as before. For the Austrian data set the performance was 36.19 %,

36.69 % for the Flemish data. The slight decrease in performance on both

data sets seems correlated to the degrees of freedom in the representation

of the membership functions. However, the results are still much better

than those obtained with language neutral triangular shaped fuzzy sets.

Table 6.8 summarizes all given results.

Table 6.8: Weighted percentage of correctly predicted terms in the language

independent model (optimized for Flemish data).

Linguistic terms Flemish Austrian

Accurate representation 37.14 % 37.13 %

Equidistant piecewise-linear representation 34.07 % 34.03 %

Probability based representation 36.19 % 36.69 %

The above experiments and results show the following.

• The fuzzy noise annoyance advisor enables a language neutral model

that can use all available data, even when the surveys collecting the

data were conducted in different languages, using different terminol-

ogy and annoyance scales. This feature is useful to find a general

model and to test rule hypotheses on multiple data sets, only limited

by the amount of variables that are common to all data sets.

• An accurate representation of linguistic terms by fuzzy sets is impor-

tant for the performance.

• The construction method based on the fixed overlap degree is better

suited for this kind of applications than the probability based con-

struction methods.

See [160] for more detailed language-related comparisons.
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3.5.2 Fuzzy analysis

To further demonstrate the generality of the noise annoyance advisor , two

more variables were included in the model: age and gender (see table 6.9).

The analysis reported here was performed with the fuzzy quality measures

and associated error measure. For linguistic approximation, the lower ap-

proximate descriptor was used. These results have already been published

in [26].

Table 6.9: Additional fuzzy rules to test the language independence of a

model. Used abbreviations: “at least” (at l.).

If age (years) Then annoyance

T8 young Lin(20,30) below moderate S(5,7.5)

T9 old Lin(50,60) below moderate S(5,7.5)

If gender Then annoyance

T10 male Enum(1,0) above average S(0,4)

T11 female Enum(0,1) at l. somewhat norm(SE(2.59,2.70))

Tuning was done on the Flemish data set. The model was subsequently

run on the Austrian data too, changing only the linguistic approximation to

the correct terms. Because predicting the response on a five point scale is

inherently more difficult than predicting the response on a four point scale,

the prediction error e is divided by the highest non-specificity for each scale

N5 and N4. This exercise is repeated for several values of the parameter

α. The results are shown in figure 6.4. The prediction error for the Aus-

trian data produced by a model tuned to Flemish data (open squares) is

surprisingly similar to the prediction error obtained on the Flemish data

set (closed diamond). Optimization on the Austrian data results in a lower

prediction error (closed squares), but the rule certainty degrees tuned to

the Austrian data make the performance of the model on the Flemish data

slightly worse (open diamond). A possible explanation could be that the

Austrian data are all taken in the vicinity of the same major railway track

following the Inn Valley, while the Flemish data include railway tracks with

different type and density of rolling material on them. This makes the

Austrian data more specific and thus the tuning slightly overfitted to this

particular situation.

The noise annoyance advisor seems to generalize quite well, at least

on the data used here. The fuzziness in the outcome of the model and

evaluation based on purely fuzzy quality measures, allows the model to

give a very uncertain result in those situations that are not absolutely clear.

This is not possible using crisp noise annoyance prediction. Moreover,
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Figure 6.4: Scaled prediction error as a function of α for Austrian and

Flemish road traffic annoyance prediction.

fuzzy relations between variables and annoyance are not optimized for a

particular data set; they are merely included or excluded by tuning. Both

features explain why the fuzzy model generalizes quite well.

3.6 Analyzing the rule base

In this section, the fuzzy rules in the rule base will be examined closely. The

use of the fuzzy rule based framework to test the importance of hypotheses

will be explored in more detail.

An indication of the importance of a particular rule in the optimized

fuzzy rule base system can be gained from studying the certainty degrees

and the adaptability of each rule. Certainty degrees can be interpreted as

the degree to which the particular rule dominates the outcome of the sys-

tem, if fired. A rule with certainty degree 0 has completely no effect on

the inference result. Adaptability as defined in chapter 2, section 8.4.4,

indicates in a fuzzy way how often and to what extend a rule is fired or

triggered when evaluating the data set. In other words, the percentage of

the population for which the rule results in some kind of clue for predicting

annoyance. Rule adaptability is explicitly used in the fast implementation

scheme of the possibility qualifying rule inference, but it can be calcu-

lated for certainty qualifying rules as well. However, certainty degrees and

adaptability give only a first indication. There are several reasons for this.

First, rules with a low certainty degree can still be important if they pro-
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vide information on a region of the annoyance universe where information

is scarce (e.g. they allow distinguishing between “fairly” and “moderately”).

Secondly, rules are in general not orthogonal. This means that more than

one rule in the system describes the same underlying (possibly more di-

mensional) mechanism. The choice between such rules that is made by the

optimization, is often not very stable and cannot be used as decisive about

which rule is best or which underlying variable is more important.

To assess the validity of rule hypotheses, a more thorough analysis

is required. Assume a model that contains two rules operating on non-

orthogonal data that partly compensate. Minimizing the model error, may

give quite high certainty degrees to both rules. When one of the rules is

then omitted, this could lead to a very bad model which could be falsely

interpreted as proof for the rule being very important. Yet, the reduced

system should also be optimized separately. If this tuning automatically

removes the other rule (assigning a very low certainty degree), it would

show that both rules probably do not represent hypotheses that lead to a

better prediction of noise annoyance.

So, in case compensation between two sets of rules R1 and R2 is sus-

pected, four models should be tuned and compared for their performance:

a model without the rules R1 and R2, adding only R1, adding only R2 and

adding both. This approach allows to really check the validity of (poten-

tially compensating) rule hypotheses. The next subsections will provide ex-

amples of this procedure for several aspects of the noise annoyance model.

3.6.1 Exposure and masking

The analysis reported in this section is based on the modeling of railway

traffic noise annoyance, optimized with the crisp quality measures (upper

approximate descriptor) on the Austrian data set [22] [23] [25], see table 6.4

for an overview of the rules.

Exposure to noise at home, as defined in the conceptual annoyance

model (see chapter 4, section 2.1), includes all physical characteristics of

the intruding noise and the background noise level. The basic exposure

variable is a calculated A-weighted day-night sound level . However, sound

level calculations do not include the dwelling of the respondent. Additional

exposure information can be extracted from the orientation of the house.

The view from the living room main window and the main bedroom win-

dow (towards a noise source or towards a quiet side of the house, e.g. a

garden) provides some clues. Also, the average day-night sound level Ldn

does not take into account specific variations of the sound level. Here, the

distance to the source can provide additional information. The rules based
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on these variables turned out to be very useful.

Railway noise exposure can be masked by background noise. Since

masking requires a loud continuous background, only sound from high-

ways and main roads is considered as the masker. Masking is generally

understood in a pure physiological sense, referring to what is heard. When

a noise physiologically masks another noise, it means that the second noise

cannot be heard. However, there might also be some kind of psychological

masking effect. Both noise sources are perceived, but one of the noises is

so much more annoying than the other so that the second is neglected.

Several indicators for masking can be proposed,

• Difference between Ldn,road and Ldn,rail (A11).

• Masker noise level (Ldn) (A12).

• Distance to masker (A13).

• Windows (living room and bedroom) facing towards the masker (A14)–

(A15).

Multivariate linear regression fails for analyzing how road noise influences

the annoyance caused by railway noise [23]. Categorizing exposure in in-

tervals of 3 dBA only allows to discover some features visually. This visual

evaluation becomes difficult when more variables are introduced. However,

in the classical approach masking is only observed at high exposure levels

for railway noise. This is a somewhat strange observation that deserves

some special attention. A possible explanation is given in section 3.6.2. In

accordance with the crisp results, the fuzzy rules are only formulated for

these high exposure levels.

Comparing a model only including the DNL based rules (A1)–(A4), with

a model that also includes one of the masking rules shows some reduc-

tion in error value. If all the masking rules are used together the result

is similar. When looking in detail at the outcome of the optimization, it

is further observed that the certainty degree of a particular rule related

to masking decreases when an additional rule is added. From this it can

be concluded that the masking rules indeed sample more or less the same

feature. In table 6.10, the decrease of the error measure without masking

versus with masking is shown (between brackets). For easy comparison the

performance difference to the best value in the table is shown.

Note that the increase in performance is rather low. This is not sur-

prising since only a very limited part of the population is exposed to both

sources at high levels. In the fuzzy noise annoyance advisor , the masking

rules reduce the possibility of being highly annoyed when there is a chance

of masking. Nothing is assumed concerning a lower degree of annoyance.
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Table 6.10: Comparison of the error measure value of exposure rules and

masking rules combinations.

No masking Masking

Ldn 70 (975) 57 (962)

Ldn and other exposure rules 10 (915) 0 (905)

Hence, the performance of the masking rules is in agreement with the clas-

sical analysis. See [22] and [23] for a more detailed comparison between

classical and fuzzy analyzes.

However, both analyzes neither prove that the observed relation is causal

nor that the effect is physiological masking. There may be many indirect

ways through which living close to a highway reduces annoyance caused by

railway noise. To check whether the presumed masking effect could be due

to the (indirect) more accurate description of exposure, additional rules for

modeling exposure were added. These rules include variables such as the

distance to the source and the direction of the living room and bedroom

windows (A5)–(A10). As expected, the performance of the enhanced fuzzy

rule based model increases. To analyze the relative contributions of sets of

rules to the model performance, the modeling error is compared for four

combinations of rules in table 6.10. Although additional exposure rules

reduce the model error significantly, masking rules show a similar benefit

independently of the presence of more accurate exposure modeling. Thus

masking rules are orthogonal to exposure-related rules [23]. Adding more

rules for sensitivity (A16)–(A17) and age (A22)–(A24) confirms this orthog-

onal masking effect [22].

Showing this masking effect in combination with many other variables,

is quite simple in the fuzzy noise annoyance framework, but far more dif-

ficult with classical techniques.

3.6.2 Sensitivity to noise

Sensitivity to noise is found to be significantly linked with noise annoy-

ance in most noise surveys [63]. Particularly high noise sensitivity seems

to be a relatively stable personality trait in time. See chapter 4, section 2.1

and [25] for a review of relevant literature. The Austrian survey is used

to test the effect of sensitivity rules in a railway noise annoyance model.

The survey contains a question asking explicitly for noise sensitivity, pro-

viding a verbal answer scale using the same four linguistic labels as for

the annoyance questions. The rules (A16) and (A17) (see table 6.4) based
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on the reported sensitivity are included in a model that contains only Ldn

based rules (A1)–(A4). The noise annoyance advisor is optimized with the

crisp performance measures using the upper approximate descriptor for

linguistic approximation. The results obtained with the optimized mod-

els are shown in table 6.11. They have already been reported in [26]. The

sensitivity rules clearly increase performance, expressed as the (weighted)

percentage correctly predicted annoyance labels.

Table 6.11: Comparison of the model performance with sensitivity rules.

Model Austrian Road Austrian Railway

Ldn rules 32.5 % 37.5 %

Ldn and sensitivity rules 35.4 % 38.7 %

Quantifying reported noise sensitivity requires input from the subject.

Sensitivity is therefore chosen as an example of a pre-conditioner , which

is estimated internally on the basis of a number of well chosen indicators.

Such a separate building block (submodel) for sensitivity (see chapter 4,

section 3) can be more attractive than the reported sensitivity, e.g. when

noise sensitivity is not directly assessed in a survey. The rules for the

sensitivity submodel are shown in table 6.12 (S1)–(S6) [129]. The linguistic

approximation and interpretation of the fuzzy estimate of noise sensitivity

is not required. It can be used directly as an input to subsequent rules auto-

matically taking into account the uncertainty and vagueness of the result.

In extreme cases, when there is insufficient evidence to draw conclusions

on noise sensitivity, the result will be very non-specific and will not trigger

any subsequent fuzzy rules based on this variable. This is a great strength

of the fuzzy noise annoyance advisor.

The submodel, to model the response to noise sensitivity on the Aus-

trian data set, predicts about 30 % of the subjects correctly (weighted on the

four labels used in the reported sensitivity question). This is because only

very few indicators are available that allow estimating whether a person

has a higher possibility of being sensitive to noise.

In [22] the annoyance caused by railway noise near highways and through

roads was studied (based on the Austrian data set). It has been observed

that railway noise annoyance is lower than expected based on the expo-

sure close to highways. Two possible explanations for this were proposed:

physiological masking (see section 3.6.1) and external adaptation of the

population to the noisy situation (sensitive people will not stay there). This

typical analysis is based on the comparison of the performance of four par-

tial models. Table 6.13 shows the error e (between brackets) and the differ-
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Table 6.12: Fuzzy rules modeling sensitivity to noise. Used abbreviations:

“at least” (at l.).

If age (years) Then sensitivity

S1 young Lin(20,30) below moderate S(5,7.5)

S2 old Lin(50,60) below moderate S(5,7.5)

If size of household (people) Then sensitivity

S3 small Lin(0,2) below average S(2,8)

S4 moderately Trap(0,1,2,4) high S(5,7.5)

S5 big Lin(3,5) not high S(5,7.5)

If gender Then sensitivity

S6 female Enum(0,1) at l. somewhat S(0,2)

If distance to highway (m) Then sensitivity

S7 close S(0,300) not very high S(8,10)

ence with the best value in the table. The rules based on reported sensitiv-

ity (A16) and (A17) (decrease 13) are more general than the rules based on

physiological masking (A11)–(A15) (decrease 8) as expected (see table 6.4).

However a clear overlap between both sets of rules is observed. The sen-

sitivity based rules predict most of the variation which is also predicted

by the masking rules. This leads to the conclusion that near highways and

through roads, annoyance caused by railway noise is lower because sensi-

tive people move out or do not choose to live there. If this conclusion holds,

it should also be observed that reported sensitivity is lower than expected

under conditions that correspond to masking. When rule (S7) is added

to the sensitivity submodel, predictability of noise sensitivity increases to

31 %. This improvement is small because this rule does not apply to many

people. However, it confirms the conclusion.

Table 6.13: Comparison of the error measure value of sensitivity rules and

masking rules combinations.

No masking Masking

No sensitivity 15 (909) 7 (901)

Sensitivity 2 (896) 0 (894)
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3.6.3 Context elasticity

There has been some evidence that people living in a generally pleasing en-

vironment might tolerate more noise before feeling annoyed or reporting

this annoyance. However, also opposite effects on annoyance have been re-

ported. See [25] for a review of relevant literature. This makes it especially

difficult to find the appropriate relationships that will express the higher

elasticity in more pleasing surroundings.

The context elasticity variable is used as an example of a combined vari-

able in the noise annoyance advisor. It is modeled based on several primary

variables, and implemented as a separate building block (submodel). The

resulting possibility distributions for this variable, can be translated into

a linguistic term that can then be used in classical analyzes. Alternatively,

it can be used directly in subsequent rules. The rules included to take into

account the elasticity of a more pleasant surrounding are (A18)–(A19) (see

table 6.4).

For the modeling of context elasticity, three indicators are identified to

extract knowledge about this variable.

• The general attractiveness of the area

• The living quality of the neighborhood

• The availability of leisure facilities

The rules (E1)–(E12) (see table 6.14) are tuned with the road traffic noise

annoyance model on the Austrian data set. The optimization uses the crisp

quality measures based on the upper approximate descriptor. The out-

come of the context elasticity rules is not approximated, the possibility

distribution is directly used in the subsequent (A18)–(A19) rules (see ta-

ble 6.4). This ensures that the uncertainty of the context elasticity is fully

taken into account. Results show a decrease of the error measure with 30

units, confirming the usefulness of the submodel. These results have been

published in [24] and [25].

3.6.4 Land use

Land use may be a good indicator for more fundamental factors such as

the visual setting, non-noise pollution levels, expectation concerning noise

levels, etc. The effect of a visual setting on perception of noise has re-

gained attention in the framework of soundscape research [68], and a clear

influence of a visual setting on judgement (pleasant/relaxing) of auditory

stimuli has been demonstrated in laboratory studies [168].
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Table 6.14: Fuzzy rules modeling context elasticity.

If attractiveness satisfaction Then context elasticity

E1 very happy Enum(1,0,0,0,0) above moderate S(2,7)

E2 happy Enum(0,1,0,0,0) above average S(0,4)

E3 unhappy Enum(0,0,0,1,0) below average S(7,10)

E4 very unhappy Enum(0,0,0,0,1) below moderate S(3,8)

If living quality satisfaction Then context elasticity

E5 very happy Enum(1,0,0,0,0) above moderate S(4,7)

E6 happy Enum(0,1,0,0,0) above average S(0,4)

E7 unhappy Enum(0,0,0,1,0) below average S(6,10)

E8 very unhappy Enum(0,0,0,0,1) below moderate S(3,6)

If leisure facilities satisfaction Then context elasticity

E9 very happy Enum(1,0,0,0,0) above moderate S(4,7)

E10 happy Enum(0,1,0,0,0) above average S(0,4)

E11 unhappy Enum(0,0,0,1,0) below average S(6,10)

E12 very unhappy Enum(0,0,0,0,1) below moderate S(3,6)

To illustrate the effects of land use related variables the Flemish data

set will be used on a road traffic noise annoyance model. The base model

includes the rules (F1)–(F19) (see table 6.6). The noise annoyance advisor

is optimized for the crisp quality measures using the upper approximate

descriptor.

Crisp analysis performed in [159] showed a slight influence of the per-

centage of agricultural land use within a radius of 500 m on the experience

of annoyance. Inspired by those results, the rules shown in table 6.15 were

formulated and added to the rule base. As the prediction error decreases

slightly, the fuzzy model confirms the crisp analysis.

Table 6.15: Overview of fuzzy rules for the effect of agricultural land use.

If agriculture land (% of area) Then annoyance

L1 higher than approx. 65 Lin(60,70) at most fairly S(5,8)

L2 lower than approx. 65 Lin(60,70) at least fairly S(2,4)

To test the hypothesis whether the land use rules are basically a way to

describe the urbanization as reported by the subjects, the land use rules

were substituted with the rules (F20)–(F23) (see table 6.6). This model was

optimized (see table 6.16), leading to a slight performance improvement

with regard to the model with the land use rules. Finally, both rule sets were

added together but optimization could not improve performance further.
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These results confirm the hypothesis that both variables indeed sample the

same relationship.

Table 6.16: Comparison of the error measure value of land use and urban-

ization rules in combination with reported traffic rules.

Base Base + land use Base + urbanization

No traffic 3.9 (174.9) 1.7 (172.7) 0 (171.0)

Traffic 7.4 (148.4) 5.3 (146.3) 0 (141)

The degree of urbanization may not be a fundamental variable but just

an indicator for traffic density. To evaluate this possibility, the reported

amount of traffic is included through the rules (F24)–(F27). The results

shown in table 6.16 indicate that the reported amount of traffic is indeed

an important predictor. However, the traffic rules do not compensate the

land use or urbanization rules, as both can further improve performance.

Again, the combination of land use and urbanization rules did not result

in a decreased error, which is in accordance with the previous analysis.

Apparently the human perception of urbanization and the amount of traf-

fic are more orthogonal variables than expected. The high impact of the

reported amount of traffic on the level of annoyance could indicate that

the mere presence of traffic induces noise annoyance not only through the

noise it generates. However, it could also mean that the model to calcu-

late the traffic flow is incorrect, or Ldn is not a good measure or Ldn is not

accurate enough.

To investigate the factors that influence the human perception of ur-

banization more thoroughly, a fuzzy submodel was constructed (see ta-

ble 6.18). The aim is to predict the (subjectively) reported degree of ur-

banization, based on more objective criteria. The degree of closed-space

development within a radius of 500 m and the average population density

within an area of radius 500 m surrounding the house of the respondent,

proved to be very good indicators, as they can predict about 37.6 % cor-

rectly, weighted over all urbanization categories.

Driven by the observation that the urbanization rules compensate for

the land use rules, four rules (U9)–(U12) (see table 6.18) on the percentage

of agricultural land use within a radius of 500 m (one for each category of

urbanization) were incorporated in the submodel. However, these could

not improve prediction performance. A closer look at the data revealed a

possible explanation. Calculating the average and the standard deviation

of the percentage of agricultural fields per urbanization category shows
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that it is very hard to distinguish between center, city and suburb (see ta-

ble 6.17). Based on this variable, it only seems possible to separate between

countryside and non-countryside, which is exactly what our land use rules

successfully did. Trying to include the percentage of closed-spaced devel-

opment directly, experienced the same problem.

Table 6.17: Percentage of agricultural fields per urbanization category.

Urbanization Center City Suburb Countryside

Average 0.15 0.25 0.29 0.49

Standard deviation 0.19 0.19 0.21 0.23

It could be argued that the subjective perception of urbanization is a

concept that is also strongly influenced by the surrounding neighborhood

in a larger area. People living in a suburb of a very large city will perceive

the same population density differently than people living in the center of a

very small city. However, it seems that crisp GIS land use queries based on

counting equal land occupation in circles around the observation point are

not accurate enough. More flexible, fuzzy querying functionalities in the

GIS could help to identify such spots that are “close to a local concentration

in population density” or “close to a sufficiently large green area”.

Table 6.18: Overview of fuzzy land use rules for the Flemish data set.

If closed-spaced development (% of area) Then urbanization [country, …]

U1 low Lin(15,25) country Enum(0,0,0,1)

U2 around 25 % Tri(15,25,30) suburb Enum(0,0,1,0)

U3 around 35 % Tri(25,30,35) city Enum(0,1,0,0)

U4 high Lin(30,35) center Enum(1,0,0,0)

If population density (nr/km2) Then urbanization [country, …]

U5 low Lin(770,1300) country Enum(0,0,0,1)

U6 below medium Tri(1000,2200,3200) suburb Enum(0,0,1,0)

U7 above medium Tri(1300,2800,3800) city Enum(0,1,0,0)

U8 high Lin(2200,3400) center Enum(1,0,0,0)

If agriculture land (% of area) Then urbanization [country, …]

U9 little Lin(15,25) center Enum(1,0,0,0)

U10 around 23 % Tri(13,23,33) city Enum(0,1,0,0)

U11 around 30 % Tri(20,30,50) suburb Enum(0,0,1,0)

U12 a lot Lin(30,50) country Enum(0,0,0,1)
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4 Annoyance accumulation advisor

4.1 Overview

Because the Austrian data set does not contain a question on global accu-

mulated noise annoyance, all tests of the accumulation models have been

performed with the Flemish data set. All results are optimized for crisp

prediction to ease comparison between the crisp and fuzzy models.

Before discussing the results, the data is investigated in more detail.

Table 6.19 shows the number of complete records N, containing an eval-

uation of each noise annoyance source (with n number of sources) and a

global evaluation. The distribution of records on the five linguistic terms,

L1 (“not at all”) to L5 (“extremely”), for global annoyance is also given. The

same information about the odor data is only included as a reference.

Table 6.19: The number of complete records N, number of sources n and

the relative occurrence of each total annoyance level (in %) in the data set.

Stressor N n L1 L2 L3 L4 L5

Noise 2661 21 35.59 35.67 18.19 8.57 1.99

Odor 2719 23 54.69 27.73 11.51 4.93 1.14

In view of the models, the data contains three kinds of inconsistencies,

in the sense that some data records can never be correctly classified by the

model (see section chapter 5, section 3.1.3). A first type of inconsistency

comes from the compensating behavior. If the reported global annoyance

is lower/higher than the minimum/maximum of the annoyance of any of

the sources, the data record will certainly not be correctly classified, which

is the case for noise and odor in 5.34 % and 6.66 % respectively. This is

true if a fuzzy integral based accumulation model is used because of the

integral properties. It has been experimentally observed that this is also

true for the optimized fuzzy rule based accumulation model, if no frame of

reference adaptation is taken into account. A second kind of inconsistency

(doubt ) occurs when two people report the same annoyance levels for all

sources, but rate the accumulated annoyance differently. Finally, there is

also a problem if a person rates the annoyance level for all sources equally

or higher (more annoying) than another person, but still reports less ac-

cumulated annoyance (reversed preference). After removing the smallest

number of data records to get rid of all inconsistencies of the first and sec-

ond type (keeping 2141 of the 2661 records), the maximum performance
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that can be achieved has been calculated as being 78.99 %. The third type

of inconsistencies was left untouched because it is more difficult to remove

(also due to its interaction with the second type) while retaining the maxi-

mum number of consistent records. Therefore, the theoretical upper limit

performance will be even lower than the cited maximum performance of

78.99 %.

In table 6.20 an overview is given of all classification results with the

different models.

Table 6.20: Classification performance of accumulation models.

Model Performance (in %)

Crisp strongest component 55.5

Fuzzy rule base 59.0

1-maxitive Choquet integral 61.3

1-maxitive Sugeno integral 60.9

2-maxitive Sugeno integral 61.4

As a reference, table 6.20 also includes the results with the (crisp) strongest

component model which performs best of the crisp models that were tested:

vector summation, summation and inhibition and linear regression [18]. In

figure 6.7 the classified general annoyance from the strongest component

model is compared to the reported general annoyance. The percentages

are scaled to take into account the number of observations in each cate-

gory. Category labels have been omitted and run from left to right (“not at

all annoyed”, “slightly annoyed”, “fairly annoyed”, “strongly annoyed” and

“extremely annoyed”) and from bottom to top. The area of the bubbles is

proportional to the percentage. All results from the accumulation models

will be presented in the same way.

From this figure, it is obvious that the model overestimates general an-

noyance and that the overestimation is independent of the annoyance level.

This is exactly what has been called the “principle of compromise” (see chap-

ter 5, section 1.1).

4.2 Fuzzy rule based model

The results of the fuzzy rule based model have already been presented

in [17] [19] and [18].

The (weighted) percentage of correct classifications is only slightly bet-

ter than the strongest component model . This is not surprising, as the
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Figure 6.5: Relative occurrence of various combinations of classified and

reported accumulated annoyance with the strongest component model.

fuzzy rules are in fact only a fuzzy expression of the cognitive processes

involved in the strongest component model. Figure 6.6 shows the relative

occurrence of each combination of the classified and reported general an-

noyance level. The fuzzy model overpredicts the general annoyance level

less often than the strongest component model, especially at low annoy-

ance levels.

It turns out that a model including a change of the frame of reference,

does not significantly performs better. This failure is attributed to a lack

of increase in the uncertainty of the contribution of annoyance by unim-

portant sources to the accumulated annoyance.

For an analysis of the remaining error, see [18] and [19]. Only age seems

to have a slight influence in the sense that young people report less ac-

cumulated annoyance even if they report the same annoyance levels for

particular sources.

4.3 Fuzzy integral based models

The results from the Choquet integral based model have been reported

in [163], while the Sugeno model results have been presented in [164].

Figure 6.7 shows the results for an optimized 1-maxitive fuzzy measure

with the Choquet integral (left) and the Sugeno integral (right). Both inte-

grals perform more or less similarly and slightly better than the fuzzy rule



182 MODELING RESULTS

Classification

R
ep

or
te

d

51

9

2

1

1

40

57

11

3

1

9

36

48

7

3

2

12

40

63

5

3

3

11

34

76

Figure 6.6: Relative occurrence of various combinations of classified and

reported accumulated annoyance with the fuzzy rule based model.

based model. However, they also tend to overestimate the global annoy-

ance.

Besides the 1-maxitive measure, also other generalized possibility mea-

sures (see chapter 5, section 3.2.2) together with the Choquet integral were

used. However, there were no significant differences between the perfor-

mance of different t-conorms. A closer examination of the weights used

in the calculation of the Choquet integral, revealed that the most annoying

source receives a very high weight compared to all other sources and hence

dominates the outcome. This is in accordance with the strongest compo-

nent model that exclusively uses the most annoying source. It proves that

the cognitive accumulation process is indeed very maxitive in nature. This

is probably also the reason why the 1-additive and 2-additive Choquet inte-

gral models completely fail to model the annoyance accumulation. Repre-

senting a maxitive fuzzy measure is not attainable with only second order

(2-additive) Möbius coefficients.

As can be seen, the Sugeno integral is also a good model for the ac-

cumulation of noise annoyance. A 2-maxitive measure performs slightly

better (but not significantly) than a 1-maxitive measure. This indicates

that annoyance by two sources can accumulate to a stronger effect on the

aggregation than the maximum of both sources. This enforcement effect is

illustrated in figure 6.8. The left figure shows the accumulated annoyance

level (in the interval [0,1]) in function of the annoyance caused by build-

ing activities (X-axis) for an annoyance level of 0.5 due to truck (un)loading.
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Figure 6.7: Relative occurrence of various combinations of classified and

reported accumulated annoyance with the fuzzy integral based model (left:

1-maxitive Choquet, right: 1-maxitive Sugeno).

The annoyance caused by all other sources is not taken into account. Com-

pared to the 1-maxitive measure with µ({building activities}) = 0.02 and

µ({truck (un)loading}) = 0.07 (dashed line), the 2-maxitive measure with

µ({building activities, truck (un)loading}) = 0.79 (solid line) enforces the

accumulation of both sources (dotted line indicates maximum annoyance

of both sources). The right figure shows the same for accumulated annoy-

ance in function of annoyance caused by small businesses for an annoyance

level of 0.75 caused by commercial activities, with the 1-maxitive measure

µ({small businesses}) = 0.13 and µ({commercial activities}) = 0.45 and

the 2-maxitive measureµ({small businesses, commercial activities}) = 0.69.

Table 6.21 shows a comparison between the fuzzy measure singleton

values of an optimized 1-maxitive Choquet and 1-maxitive Sugeno model.

They are quite similar as expected. Sources may receive very low impor-

tance (e.g. fancy fairs and festivals, agricultural equipment and pet animals)

because they are not thought of when rating global annoyance or because

they do not occur frequently enough.
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Figure 6.8: Enforcement of annoyance by two sources with a 2-maxitive

measure (solid) versus a 1-maxitive measure (dashed) and the maximum

annoyance (dotted). Left: building activities w.r.t. truck (un)loading with

annoyance level 0.5. Right: small businesses w.r.t. commercial activities

with annoyance level 0.75).
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Table 6.21: The optimized fuzzy measure singleton values for each source

of noise.

Source Choquet Sugeno

Road traffic 0.91 0.94

Railway traffic 0.52 0.65

Air traffic 1.00 1.00

Water traffic 0.81 0.99

Truck (un)loading 0.28 0.10

Small businesses 0.47 0.23

Factories 0.92 0.99

Commerce 0.97 0.99

Building activities 0.87 0.97

Dance halls 0.94 0.95

Restaurants and cafes 0.52 0.28

Entertainment parks 0.41 0.15

Fancy-fairs and festivals 0.29 0.22

Sports events 0.30 0.68

Car and motor racing 0.88 0.99

Agricultural equipment 0.28 0.08

Farm animals 0.15 0.37

Stable ventilators 0.11 0.83

Playing children 0.89 0.88

Pet animals 0.24 0.06

DIY noises 0.92 0.88





Chapter7

Conclusions

The future cannot be predicted: it has to be invented.

Dennis Gabor (1900-79)

Hungarian-English physicist

In this work, the noise annoyance concept has been thoroughly ana-

lyzed. Annoyance has been approached as an inherent vague concept that

is modeled with the use of fuzzy set theory . This approach was motivated

by the way people usually deal with annoyance in reality. How they ex-

press and communicate their level of annoyance to other people by means

of natural language.

First, representational aspects have been studied. It was argued that

commonly applied crisp cut-off points are not well suited to represent lin-

guistic terms (e.g. 7.2 on 10 for “highly annoyed”) that express a certain

level of annoyance. In chapter 3 a number of techniques have been investi-

gated and extended, which are much better suited to accurately represent

these linguistic annoyance expressions. They are based on fuzzy set the-

ory . This theory has been specifically developed to model gradual, smooth

transitions of concepts (instead of the black-white view of classical, crisp

set theory). It allows to represent linguistic terms by fuzzy sets, taking into

account the inherent vagueness in a mathematically sound way. In particu-

lar, two representation methods have been examined in detail: probability

based transformations and individual curve construction methods. The

latter have been extended to enhance their use in practical applications,

such as fuzzy rule bases. To demonstrate the accuracy of the fuzzy set

representations, an automated translation tool for linguistic terms in sev-

eral languages has been built. This tool operates solely on the fuzzy sets

underlying the linguistic terms and on the similarity between these fuzzy

sets.

187
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Next, a conceptual noise annoyance model was studied. The complex

relations that have been identified, contrast sharply with the currently

adopted standard practice of predicting the percentage of highly annoyed

people only based on the DNL noise exposure levels. Instead of this sta-

tistical based annoyance indicator (for large regions), in chapter 4 a noise

annoyance advisor framework has been proposed to calculate the degree

of annoyance on an individual person basis. This allows to predict the level

of annoyance starting from the state of the environment, taking all influ-

encing variables into account, including attitudinal, personal, emotional,

demographical,... factors. Internally, the framework is driven by fuzzy

logic . In this fuzzy extension of binary logic, truth also becomes a matter

of degree. Fuzzy logic allows to infer conclusions, such as binary logic, but

it can do so even in the presence of vague and uncertain data and knowl-

edge. The available knowledge is represented as fuzzy rules stored in the

fuzzy rule base, expressing relations between variables in a linguistical way.

To evaluate the constructed noise annoyance advisor, recall the annoyance

modeling goals that were put forward in chapter 1.

Tolerant The framework can make use of any kind of data, being a crisp,

precise number or a fuzzy set that is vague and very uncertain. Also

the knowledge stored in the fuzzy rule base can include vague notions

as antecedents and consequents of the fuzzy rules. Each rule has

attached a certainty degree expressing the uncertainty of the rule.

Reliable The noise annoyance advisor can be configured to have a possi-

bility distribution on the known annoyance levels as output (fuzzy

quality measures). This reflects the vagueness and uncertainty of the

conclusion, drawn from the given input data and available knowledge.

The result can be very specific, meaning that the system is rather

sure about the provided outcome. In other situations, the result may

be very non-specific indicating that more than one linguistic label is

equally possible for the level of annoyance.

Robust The knowledge in the noise annoyance advisor is gray-colored, not

black-white. Small deviations in the input (or the knowledge) will not

lead to radically different results.

Interpretable The fuzzy rules are formulated using linguistic terms in nat-

ural language. These linguistically expressed relations between vari-

ables are being offered by experts in the field, but they have a natural

meaning to everyone who “reads the rules”. Furthermore the infer-

ence processes (depending on the operators that are used) and the
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weights assigned to each rule, have clear semantics in terms of pos-

sibility qualification or certainty qualification.

Individual The outcome of the noise annoyance advisor is the annoyance

level predicted for an individual person. The knowledge that is avail-

able in the framework can include any variable that influences the ex-

perience of annoyance. As new relations between variables become

available in literature, they can be added as fuzzy rules inside the

framework. These variables can be very specific, e.g. the direction of

the window of a house.

Adaptable Each fuzzy rule is assigned a weight expressing the certainty

of the rule. When data is available from social surveys, the data set

can be used to tune these weights. If the optimization procedure

lowers the certainty degree of a rule hypothesis to almost zero, the

rule has no effect anymore. This means that the rule does not con-

tribute to a better annoyance prediction and the hypothesis should

be rejected. However, care must be taken in order not to draw wrong

conclusions, because of interactions between compensating rules. It

may also happen that a rule seems to have no or little effect because

it samples the same underlying relationship as already expressed by

another rule. Hence, careful comparisons are necessary to estimate

the value of hypotheses. Yet, some methods to evaluate hypotheses

in an accurate way have been proposed and demonstrated.

In chapter 6 all these features have been illustrated for the modeling

of road and railway traffic noise annoyance, based on two data sets from

social surveys. It has been shown how the noise annoyance advisor can

produce crisp output for easy comparison with other crisp models. These

are outperformed by the fuzzy noise annoyance advisor . However, a more

appropriate treatment of the fuzzy annoyance concept is obtained when

the noise annoyance advisor is configured for fuzzy output. The model can

be tuned with a parameter to force the outcome into high (crisp) correct-

ness at the cost of non-specificity . The effect of this parameter has been

demonstrated on the fuzzy output of the framework. A difficult issue is

the comparison of data collected in different surveys, especially when con-

ducted in other languages, using different terminology, scales,... The noise

annoyance advisor has been proven to be capable of handling these lan-

guage related problems. Except that linguistic labels are assigned to the

rule antecedents and consequents for convenience, the fuzzy rules are in

fact language neutral. They can operate on the fuzzy set representation

of any linguistic term in any language. Similarly, the fuzzy output of the

system can be mapped to any set of linguistic terms. This makes it possible
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to extract relationships between variables, based on all available data from

various surveys in multiple languages. Finally, it has been demonstrated

how the noise annoyance advisor can be used to check rule hypotheses.

The obtained results were in agreement with classical analysis techniques

and allowed more advanced analyzes and conclusions.

Starting from a description of the state of the environment, the noise an-

noyance advisor enables the prediction of the level of annoyance induced

by a type of noise source (e.g. road traffic). But what is wanted is often

an estimation of the global annoyance level. Currently, this accumulated

noise annoyance level is best modeled with the strongest component model ,

which simply takes the highest level of annoyance caused by all considered

sources. A disadvantage is the black box behavior of this model. In chap-

ter 5, the underlying cognitive process has been identified. The formulation

of this cognitive process in binary logic has been fuzzified to a fuzzy rule

based model. These fuzzy –linguistic– rules are expressed in natural lan-

guage, providing a clear semantical interpretation. In chapter 6 it has been

shown that this fuzzy model performs slightly better than the strongest

component model. However, its main advantage is its interpretability.

Two other approaches for the classification of accumulated noise an-

noyance have been explored. The Choquet and Sugeno integrals, frequently

applied in the domain of multi-criteria decision making, both turned out

quite successful, slightly improving the performance of the fuzzy rule

based model.

Fuzzy set theory in combination with fuzzy logic and the “computing

with words” paradigm has been proven to be a suitable mathematical frame-

work for the modeling of the inherent vagueness and uncertainty of noise

annoyance. However, the availability or better, the lack of reliable input

data, remains a problem. Typically, the collected and measured data comes

as crisp numbers without any indication of its associated error or uncer-

tainty. Ultimately, the data should come as fuzzy sets expressing its quality

more accurately. The noise annoyance advisor is perfectly capable of han-

dling such input uncertainties which would even improve the accurateness

of the model (in a fuzzy way). However, generating fuzzy input data for

the noise annoyance advisor requires models that are capable of propagat-

ing data uncertainties from the driving forces of environmental pollution

to the environmental pressure, and from the pressure to the state of the

environment. See [48] for work that has been initiated in this area.

Another option to raise the performance of the noise annoyance advi-

sor, is to add additional knowledge about variables (e.g. blood pressure)

and their relationship with annoyance. Although the framework is already

capable of handling a variety of complex types of relations, other variables
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may require extensions to the proposed system.

A third line of further research can pursue the aggregation of noise an-

noyance beyond the accumulated annoyance rating, and investigate more

global variables such as quality of life. In this view, also the modeling of

other sources of annoyance (e.g. odor) and other health effects of noise

may be explored, using the same fuzzy tools.

Recently, also other researchers have started to adopt fuzzy techniques,

in the field of annoyance modeling [150] [94], as well as in other environ-

mental sciences [76] [83] [136] [95]. They provide the necessary tools to

raise the accuracy of environmental pollution models and to contribute to

a better understanding of the relationships that guide these complex pro-

cesses. Hopefully, this knowledge will allow more accurate actions and

responses to create an agreeably environment and to lead to a society re-

specting all principles of sustainable development . Therefore, I wish to

conclude with the following statement, quoted from the North American

Fuzzy Information Processing Society (NAFIPS),

The future is FUZZY!
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Genetic algorithms

One generation plants the trees; another gets the shade.

Chinese proverb

1 Introduction

Genetic algorithms (GA) were pioneered by John Holland in 1975 [84]. They

are search algorithms based on the principles of biological evolution the-

ory, which were formulated for the first time by Charles Darwin (1809–

1882). Earlier research on optimization methods (mid-sixties) inspired by

evolution theory had resulted in methodologies called Evolutionary Pro-

gramming (L. Fogel) and Evolutionary Strategies (Schwefel and Rechenberg).

The similarities between these three methods have always been much more

important than their differences. Yet, only recently their similarities have

received the attention they truly deserve. Techniques have been mixed and

matched, blurring the boundaries of the field names. This has lead to the

uniform field of research coined Evolutionary Computing (EC) [67].

Evolutionary computing is a stochastic search methodology that is ro-

bust, and usually achieves a “good” solution “quite fast”. However, it can-

not guarantee that the global optimum solution is found. Therefore, EC

fits perfectly under the umbrella of soft computing, which is tolerant for

imprecision and uncertainty in favor of robustness and close resemblance

to natural processes (in this case biological evolution).

In this work, EC has been successfully applied as a non-linear optimiza-

tion method. The basics of this methodology are briefly introduced in this

appendix, with special emphasis on the techniques that were actually used.

First, the biological principles of evolution theory as simulated by EC are
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described. Secondly, it is explained how these principles are used in a com-

puter algorithm to find solutions for optimization problems. For a more

complete and thorough study of modern evolutionary computing, the in-

terested reader is referred to [7] and [67].

2 Biological principles

In 1859 Charles Darwin published his famous book “On the origin of species”

containing his views on biological evolution. At that time, his principle

of natural selection was a source of much controversy. It states that the

species best adapted to their environment are favored for survival and fur-

ther evolution. This is also known as the “survival of the fittest”. Together

with the occurrence of small, apparently random changes in the external re-

sponses between parents and their offsprings, it provides the basis for his

macroscopic theory of evolution. Later, microscopic findings in the field

of biochemistry and genetics concerning the mechanisms of heredity were

pioneered by Gregor Johann Mendel (1822–1884). The synthesis of the the-

ories put forward by Darwin and Mendel is called neo-darwinism, which is

presently generally accepted as the correct explanation of evolution.

The most important points of this synthesis are briefly discussed below.

For more details, see [7] and [67].

Structure and behavior Individuals can be viewed as a duality of their

genotype, the underlying genetic coding, and their phenotype, the

manner of response contained in the behavior, physiology and mor-

phology of the organism [67].

Natural selection The individuals best adapted to their environment have

more chance to survive and to reproduce. An individual is well adapted

when its functional behavior (phenotypic variation) is highly appro-

priate in light of the physics of its environment. The individual is

said to have a high “fitness” degree. The goal of natural selection is

to maintain or increase the fitness of the population.

Heredity Genes are the transfer unit of heredity. The collection of all genes

is called the “genome”, and represents the genotype of an individual.

Highly fit individuals that are capable to reproduce, can transfer (part

of) their genetic information into the next generation. During sexual

reproduction, the genes of the parents are recombined. This will ulti-

mately expose a wide variety of genotypes to the environment. How-

ever, errors are inevitable during this reshuffle of information which

will lead to mutational variation.
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Three advantages of recombination have been identified: greater ef-

ficiency for adjusting to a changing environment, bringing together

beneficial mutations and removing deleterious mutations [67].

3 Computer simulation

3.1 Basic algorithm

The biological principles of evolution are simulated by the following algo-

rithm to handle optimization problems.

1. Create an initial population of random individuals, represented by

their genetic information (genome which consists of genes). Each in-

dividual must represent a possible solution to the optimization prob-

lem.

2. Repeat the following loop until a termination condition has been sat-

isfied.

(a) Evaluate the fitness of each individual in the population. This

fitness score specifies the quality of the individual as a solution

to the problem.

(b) Apply the genetic operators to form a new generation.

Selection Select two individuals from the population with a prob-

ability based on their fitness score. The higher their fitness,

the more chance they have to be selected for reproduction.

Crossover Create two new individuals (offsprings) by random

recombination of the genomes of the selected individuals

(parents).

Mutation Alter a randomly chosen gene of the offsprings with a

certain probability.

3. Designate the best solution in the final population, the individual with

the highest fitness score, as the result. It may represent an optimal

solution or an approximate solution to the optimization problem.

The historical differences between Genetic Algorithms, Evolutionary Pro-

gramming and Evolutionary Strategies, were only concerned with the spe-

cific techniques to implement the representation of an individual, select

individuals, and perform the genetic operations. One methodology had no

crossover, while another had no mutation,... The above algorithm general-

izes all three and forms the basis algorithm in Evolutionary Computing.
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Usually, the population size is kept constant with non-overlapping gen-

erations (“simple genetic algorithms”), although this is not a strict require-

ment. There are also variants with overlapping populations in subsequent

generations (“steady state algorithms”). Even algorithms that evolve mul-

tiple populations in parallel with migration of individuals between popula-

tions have been constructed (“deme genetic algorithms”). In this appendix,

we will only discuss the simple genetic algorithms which have been used

in this work. Below, the different steps of the basic algorithm and some

possible implementations are presented in more detail.

3.2 Representation

The first important thing to decide is the choice of data structure to rep-

resent the genotype of an individual (by a genome). An appropriate rep-

resentation of a possible solution to an optimization problem is largely

dependent on the problem at hand. A good choice is minimal but com-

pletely expressive. All possible solutions should be representable with the

chosen data structure. But at the same time, it should be impossible to

represent an infeasible solution to the problem. The possibilities are re-

ally endless, arrays containing real values, strings of bits, tree structures,...

Of course, the choice of representation is not independent of the choice

of operators that will act on the genome. The operators must be able to

maintain its integrity.

One of the most simple data structures to code a genome is an array of

values, which can be of variable or fixed length. Each element in the array

is then called a gene. The set of values that each gene can take is called the

allele set.

3.3 Selection

Each individual represented by its genotype (genome) is associated with a

fitness score that is calculated by a fitness function or objective function.

The fitness score expresses the quality of the solution in the optimization

problem. Therefore, it can be regarded as the expression of the phenotype

of the individual, the way the individual looks like and behaves in its en-

vironment. In case of an optimization problem, the environment is in fact

the solution space in which the search for an optimal solution takes place.

The fitness function evaluates the behavior of the individual in that solu-

tion space. The ultimate goal of the search process is the maximization of

the fitness value of individuals. The higher the fitness value, the better the

solution. However, in practical applications it is sometimes convenient to
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evaluate the individuals by an error function. Of course, the search must

then be oriented towards a minimization of this error value. Formally, the

error function can be considered as the inverse of a fitness function. Hence,

both approaches are theoretically equivalent. The remaining part of this

appendix will stick to the view of maximizing a fitness value.

The selection mechanism has to choose the individuals for mating, the

parents that will have to produce offsprings. Where the genetic operators

create individuals in a largely undirected way, the purpose of the selection

operator is to direct the search towards individuals that perform well in the

solution space. Individuals whose genome may contain genes that make

them well adapted to the environment and are likely to survive in next

generations. The following selection schemes are commonly encountered

in the literature [7].

Roulette wheel This selection method picks an individual based on the

magnitude of its fitness score relative to the rest of the population.

The higher the fitness score, the more likely an individual will be

selected. The name derives from the analogy with a biased roulette

wheel where each individual is assigned a slot sized in proportion

to its fitness. The probability that an individual is chosen is equal

to its fitness score divided by the sum of the fitness scores of each

individual in the population.

Uniform In an uniform selection process, each individual in the population

has the same probability of being chosen.

Tournament When a q-tournament selection operator is adopted, q in-

dividuals are chosen using another selection strategy (e.g. roulette

wheel, uniform,...). The best individual from this group is then se-

lected as the winner of the tournament.

An important aspect of a selection operator and of an evolutionary algo-

rithm in general, is its selection pressure. It is the probability to select the

best individual compared to the average selection probability of all indi-

viduals. Under high selection pressure, only the best individuals will have

the chance to produce offsprings. Their genes are maximally exploited and

will soon become dominant in the population. This will eliminate the abil-

ity of the algorithm to find better solutions. This phenomenon is called

premature convergence, the algorithm converges quite fast to a local opti-

mum. However, when the selection pressure is low (e.g. uniform selection),

the search is rather undirected. Many areas of the solution space will be

explored but none will be used to direct the search towards an optimum.

Tournament selection enforces more pressure than the underlying selec-

tion operator that is used.
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The selection pressure can be adjusted by using fitness scaling. Fit-

ness scaling transforms the raw fitness scores calculated by the objective

function to the fitness scores that are taken into account by the selection

operator. The most common adopted scaling method is linear scaling. Lin-

ear scaling transforms the raw fitness scores such that the average fitness

score in the population remains unaffected and the maximum fitness score

in the population is equal to a fixed constant (usually 2) times this aver-

age fitness. In the beginning, convergence is slowed down because a super

fit individual cannot entirely dominate the selection process. This would

dramatically reduce the genetic diversity of the population too early. (the

amount of exploration is increased). With the progression of the search,

the differences between the raw fitness scores are reduced. Linear scaling

then makes sure that the slightly better individuals get a higher chance for

selection than the others. Hence, the search is more effectively focussed

towards the optimum (better exploitation).

Because genetic operators cannot guarantee that the offsprings have a

higher fitness value than their parents, the population may loose its best

individual and never be able to find it (or better individuals) again. To avoid

this situation, the elitist strategy can be adopted. Elitism makes sure that

the best individual of the population always survives to the next generation

without any modification.

3.4 Crossover and mutation

The primary genetic operators used in evolutionary computing are crossover

and mutation. Usually, crossover recombines the genetic information of

two parents to produce two offsprings (although variations do exist, e.g.

asexual crossover). Its purpose is mainly to preserve the genes of well

adapted individuals in the next generations (exploitation). The mutation

operator is executed on a single genome with a smaller probability than

crossover. Its goal is to create new genetic information and to keep a cer-

tain amount of genetic diversity in the population (exploration).

The choice of crossover and mutation operator largely depends on the

adopted representation of the genome, e.g. swapping sub trees in a tree

structure representation, shuffling a list representation,...

When the representation is a simple array, the following crossover op-

erators are common (see figure A.1).

One point crossover The genome of both parents is cut in two pieces at

the same randomly chosen location and the parts are swapped.

Two point crossover Two points are randomly selected along the genome
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and the segments in between these points are swapped.

Uniform crossover Uniform crossover creates two offsprings by randomly

choosing each gene from either parent.

Figure A.1: Genetic crossover operators on arrays of fixed size. Left: one

point crossover, middle: two point crossover, right: uniform crossover.

The mutation operators usually perform some small, random pertur-

bations to genes with a rather small probability. However, the effect of

the mutation operator also depends on the representation of the genome.

When an individual is represented as a bit string, the mutation commonly

takes the form of a bit flip operation. The mutation of real values of-

ten consists of modifications according to a Gaussian distribution with a

specified standard deviation. In [67], a self-adaptive mutation operator is

used. This operator modifies a gene with Gaussian perturbations, but now

the standard deviations are also part of the optimization procedure per-

formed by the GA. For x a genome as an array of genes (x1, x2, . . . , xn)with

n ∈ N \ {0}, and σ an equal sized array of standard deviation parameters,

the self-adaptive mutator is defined as, for each i ∈ {1,2, . . . , n},

x′i = xi +N(0, σi) (A.1)

σ ′i = σi +N(0, σi) (A.2)

whereN(0, δ) denotes a Gaussian distribution with average 0 and standard

deviation δ. Care should be taken that the standard deviations remain

positive.

4 Summary

In this work EC has been used as an optimization method because they are

known for their robustness in non-linear, multi-modal search spaces [67].



200 GENETIC ALGORITHMS

All genomes have been represented by simple (fixed length) array data

structures. The unit interval [0,1] has been used as allele set with a dis-

cretized step size of 0.01. The uniform crossover operator has been im-

plemented for recombination. Mutation has been performed with the self-

adaptive mutation operator. The array with the standard deviations was

also recombined with the uniform crossover operator. For the standard de-

viations, the allele set [0,0.5] with a step size of 0.005 has been adopted.

To prevent a mutation outside the allele sets (for the genes as well as the

standard deviations), the mutation step was divided by two as long as nec-

essary to make the value valid. The population size was 50, mutation prob-

ability has been set to 0.1. The optimization loop has been repeated for

100–300 generations, depending on the number of parameters that had to

be optimized. Most optimizations have been performed multiple times to

avoid local optima and to verify the performance of the genetic algorithm.
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Software

Keep it simple, as simple as possible, but no simpler.

Albert Einstein (1879-1955)

German-American physicist

1 Introduction

The noise annoyance advisor that has been described in this work, has been

implemented to test it on a real data set. Because of the numerical nature of

the framework and the use of large data sets, the programming language of

choice had to be very fast. An object oriented (OO) approach was preferred

because it provides a robust design philosophy for software that scales

very well, promotes code reuse, and increases maintainability. It is easier

to use because it allows to express the relations between components on a

high level. It raises the level of abstraction from (artificial) procedures to

real life objects.1 Therefore, as programming language to implement the

noise annoyance advisor, C++ has been chosen. It is a modern, ANSI/ISO

standardized language that is known to be very efficient and fast. It has

all OO features, including operator overloading which is very convenient

for numerical operations on specialized data structures. C++ comes with

the Standard Template Library (STL) containing many data structures and

algorithms, and has a large community base of already developed libraries

that are freely available to use.

Two software libraries were necessary to develop the noise annoyance

advisor.

1In this respect, OO is in fact comparable with fuzzy set theory that raises the level of
abstraction from (artificial) binary concepts to gradual concepts as encountered in the real
world.
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• Fuzzy sets and fuzzy logic related software. This library should allow

to define fuzzy sets, formulate fuzzy rules, infer rule results based

on input data,...

• Genetic algorithm software, which is used to optimize the weights of

the fuzzy rules.

For the implementation of the genetic algorithm, the GAlib library ver-

sion 2.4.5 has been used, written by Matthew Wall at the Massachusetts

Institute of Technology (MIT). This C++ library can be downloaded for free

on http://lancet.mit.edu/ga. Although it already contains a large number

of standard algorithms and genetic operators, it is highly customizable. In

fact, it was only necessary to implement the genome representation used

in the noise annoyance advisor, and the self-adaptive mutation operator.

However, libraries for fuzzy set modeling and inference, typically imple-

ment only a single technique, e.g. one inference algorithm, one integral,...

They are usually not very customizable either. Therefore, it has been de-

cided to implement the fuzzy software library from scratch. This library

is briefly described in the next sections.

2 Overview

An UML diagram with the structure of the fuzzy library is shown in fig-

ure B.1.

Database FuzzySet FuzzyOperators

Model FuzzyRule FuzzyInferenceEngine

Utilities

Persistence

Figure B.1: UML Package diagram of the fuzzy software.
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3 Package descriptions

3.1 General utilities

This package contains various general purpose classes, e.g. smart pointers,

string utilities,... They are used by many other parts of the library.

3.2 Persistence

Persistence, or the storage and retrieval of objects to extend their lifetime

beyond the execution of the program, is an important aspect in software

design. The noise annoyance advisor must retrieve the survey data and

should be able to store its results for further analysis.

All classes that need persistent objects have to derive from a template

Persistentclass, which provides methods to read and write those objects.

This class can be configured with various input and output formatter ob-

jects. These objects specify the format (e.g. text, XML, data table) and the

source/destination (e.g. file, console/screen) of the retrieval/storage pro-

cess. They provide a very flexible way to specify how the objects of each

class should be made persistent. An XML-based formatter object is sup-

ported for all classes. To parse XML, the expat library version 1.2 has been

used, which is freely available on ftp://ftp.jclark.com/pub/xml/.

3.3 Fuzzy sets

For the computer implementation of a fuzzy set, a discretized representa-

tion has been chosen. Other commonly encountered representations are

based on parameterized shapes (e.g. triangular or trapezoidal shapes) or

more general piece-wise linear functions. Although the discretized repre-

sentation may not be the most efficient one, it is by far the most flexible. It

allows operations that would otherwise be less easy to perform or would

make the representation inefficient anyway.

Internally, a vector is used to store the discretized membership func-

tion. The vector is completely shielded from the outside world with a small

utility class. This class translates a point on the axis of a represented con-

cept (e.g. 6.5 on the annoyance scale [0,10]) onto a specific vector location,

taking into account the precision of the axis as specified by construction

(e.g. a vector with 101 discretized points).

The fuzzy set class implements basic functionality, such as creating

various kinds of fuzzy sets, taking the union and intersection with another

fuzzy set and various other operations such as calculating alpha-cut sets.
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3.4 Fuzzy operators

This package provides many fuzzy operators such as triangular norms and

conorms, negators, implicators, linguistic hedges, fuzzy qualifiers, simi-

larity measures,... They are all implemented as separate function objects

(functors) in the same spirit as defined by STL. This feature allows them

to be passed as arguments to algorithms (e.g. inference algorithms), op-

erators (e.g. an implicator based on a triangular conorm and negator) and

other methods. It enables classes, e.g. FuzzySet, to be configured with de-

fault operators, e.g. for performing the fuzzy set union and intersection.

The fuzzy operators are hierarchically structured to reflect their mathe-

matical properties, e.g. being a t-norm or t-conorm. On top of the hierarchy

are interfaces for binary and unary operators. They are further specialized

to various operator types and subtypes. Most of the interfaces are empty,

they are simply tag interfaces as used in Java to designate a certain type.

At the bottom, the tag interfaces are implemented as concrete function

objects. A representative sample of the structure is shown in figure B.2.

ZadehNegator

«interface»

FuzzyUnaryOperator

«interface»

FuzzyNegator

«interface»

SugenoNegator
«interface»

YagerNegator

«interface»

FuzzyBinaryOperator

«interface»

FuzzyNaryOperator
«interface»

FuzzyImplicator

«interface»

FuzzySImplicator

KleeneDienesImplicator

«interface»

FuzzyNorm

«interface»

FuzzyConorm

«interface»

FuzzyTImplicator

ZadehNormZadehConorm

Figure B.2: Static UML diagram of the fuzzy operator hierarchy.

The tag interfaces can be used to denote specific argument types, e.g.

an S-implicator in combination with a triangular conorm to aggregate rule

results in a certainty qualifying rule inference scheme. This approach en-

sures that only semantically valid arguments can be passed to algorithmic
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functions, an R-implicator instead of an S-implicator will not be accepted.

The compiler can check for such semantic errors at compile-time. In C++,

the interfaces are implemented as pure virtual classes. Multiple inheritance

is applied to provide the structure.

3.5 Fuzzy rules

The classes in this package are responsible to represent fuzzy facts that

can be used as antecedent and consequents in fuzzy rules. A fuzzy rule

also contains the inference scheme configuration that should be used to

calculate its result. Fuzzy rules can be adorned with fuzzy qualifiers (pos-

sibility or certainty degree qualification). They can be grouped into a fuzzy

rule base that aggregates the rule results using a FITA or FATI inference

scheme.

3.6 Fuzzy inference engines

These classes supply the actual algorithms to apply a fuzzy rule or rule

base to given input data to infer new fuzzy knowledge. Possibility and

certainty qualifying FITA and FATI inference schemes are supported.

3.7 Database

The primary purpose of the database class is to store the data from the

social survey that is used to test and tune the implemented fuzzy noise an-

noyance model. However, the class can also be used to store intermediate

and final (rule) results for further analysis.

The database can contain crisp numbers as well a fuzzy sets. It is struc-

tured as a large dynamically table with rows and columns, e.g. to address

survey records (rows) and the various variables (columns). Internally, an

STL map data structure is used. It is possible to switch the addressing of

data in the database with a few typedefs that modify the argument types of

the internal map and related getter/setter methods. To store general data

or parameters that are independent of a record, the database class allows

the omission of a row number.

3.8 Model

The model package actually contains the implementation of the building

blocks from the noise annoyance advisor. A model class contains the fuzzy
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rule(s) or fuzzy rule base(s) (and possibly other submodels) together with

the model parameters (e.g. rule weights). A model has an association with

a database from which it retrieves the input for its rules. It also knows how

to map the outcome of the inference process to a (set of) linguistic term(s)

and is capable of calculating an error measure based on the predicted and

reported data.

The model package can be coupled with a genetic algorithm that op-

timizes the model parameters to obtain a minimal error. This requires

subsequent evaluations of the model with different parameter sets.
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Surveys

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Thomas Stearns Eliot (1888-1965)

American-British poet and critic

1 Austrian survey

REPRÄSENTATIVERHEBUNG – UNTERINNTAL 5/98

Grüß Gott, hier spricht... für das Institut für Sozialmedizin, Universität

Innsbruck. Wir führen zur Zeit im Unterinntal eine Erhebung der persönli-

chen Lebens- und Umweltbedingungen zur Ergänzung der Umweltverträg-

lichkeitsprüfung der geplanten Bahntrasse durch. Darf ich Ihnen dazu bitte

ein paar Fragen stellen?

1. In welchem Jahr sind Sie geboren? ............. (1923–1980)

2. Wenn Sie an das letzte Monat denken, wie zufrieden sind Sie insge-

samt mit Ihrer persönlichen Lebensqualität?

1) sehr zufrieden 2) ziemlich zufrieden

3) weder zufrieden noch unzufrieden

4) ziemlich unzufrieden 5) sehr unzufrieden

3. Denken Sie jetzt an Ihre Wohngegend: Wie zufrieden sind Sie mit fol-

genden Bereichen Ihrer Wohngegend:

a) Dem Aussehen/ der Attraktivität ihrer Wohngegend

b) Der allgemeinen Wohnqualität der Wohngegend
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c) Den Erholungsmöglichkeiten der Wohngegend

d) Der allgemeinen Sicherheit in der Wohngegend

e) Der nachbarschaftlichen Unterstützung in der Wohngegend

1) sehr zufrieden 2) ziemlich zufrieden

3) weder zufrieden noch unzufrieden

4) ziemlich unzufrieden 5) sehr unzufrieden

4. Denken Sie jetzt an Ihren Wohnort: Wie zufrieden sind Sie mit...

a) Den Einkaufsmöglichkeiten des Wohnortes

b) Dem Veranstaltungsangebot des Wohnortes

c) Den Kindergärten/ Schulen des Wohnortes

d) Den öffentlichen Verkehrsmitteln

1) sehr zufrieden 2) ziemlich zufrieden

3) weder zufrieden noch unzufrieden

4) ziemlich unzufrieden 5) sehr unzufrieden

5. Denken Sie bitte wieder an Ihren Wohnort – Haben Sie Grund, sich

über folgende Dinge zu beklagen:

a) Luftverschmutzung

b) Lärm

c) Schlechte Gerüche

d) Art der Müllbeseitigung

e) Landschaftszerstörung

f) Verkehrsaufkommen

g) Industriebetriebe/ Handwerksbetriebe in Ihrer Nähe

1) sehr großen Grund 2) ziemlich großen Grund

3) weniger großen Grund 4) überhaupt keinen Grund

6. Ist das Haus bzw. die Wohnung in der Sie wohnen ein:

1) Alleinstehendes Haus 2) Doppelhaus

3) Reihenhaus 4) Wohnblock oder Apartmenthaus

5) anderer Wohntyp

7. Seit wann leben Sie schon in diesem Haus / dieser Wohnung?

Seit: .............

8. Wieviele Wohnräume, ohne Küche, Bad und Vorraum, hat ihr Haus/

Ihre Wohnung?

Anzahl der Wohnräume: .........
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9. Hat ihr Haus/ ihre Wohnung einen: (Mehrfachantwort möglich)

1) Garten 3) Gemeinsam nutzbare Grünfläche

2) Balkon, Veranda, Terasse 4) Kinderspielplatz

(5) hat nichts davon)

10. In welchem Stockwerk befindet sich

a) ihr Wohnzimmer: ................

b) ihr Schlafzimmer: ................

11. Wohin ist

a) ihr Schlafzimmerfenster

b) ihr Wohnzimmerfenster

gerichtet? (Mehrfachantwort möglich)

1) auf eine ruhige Wohnstrasse

2) auf eine Strasse mit Durchzugsverkehr

3) auf eine Autobahn

4) auf eine Bahntrasse

5) auf einen ruhigen Hinterhof/ Garten

12. Wieviele Personen wohnen ständig in diesem Haushalt, Sie selbst mit-

eingeschlossen?

Anzahl der Personen: ................

(Wenn Interviewte einzige Person im HH, weiter Fr. 15)

13. Wie viele Kinder unter 18 Jahre leben ständig in diesem Haushalt?

Anzahl der Kinder: ................

14. Wie alt sind diese Kinder? ................

Allgemeine Bewertung der Wohnumwelt

Auszeichnungsschlüssel Frage 15 bis Frage 20

1) überhaupt nicht 2) gering oder teilweise

3) mittelmäßig 4) stark/ erheblich

15. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch STRAS-

SENLÄRM belästigt?

16. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch ER-

SCHÜTTERUNGEN vom STRASSENVERKEHR belästigt?
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17. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch SCHIE-

NENVERKEHRSLÄRM belästigt?

18. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch ER-

SCHÜTTERUNGEN vom SCHIENENVERKEHR belästigt?

19. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch den

GERUCH von AUTOABGASEN belästigt?

20. Wenn Sie an die letzten 12 Monate denken, wie sehr fühlen Sie sich

insgesamt in Ihrer Wohnung und auf Ihrem Wohngrund durch STAUB

und RUSS vom STRASSENVERKEHR belästigt?

Spezielle Bewertung

21. Wenn Sie an die letzten 12 Monate denken, bei welchen Tätigkeiten

und wie oft fühlen Sie sich durch

I) Straßenverkehrslärm

II) Schienenverkehrslärm

gestört?

a) beim Fernsehen oder Radiohören

b) beim Ausruhen/ Ausspannen (nach der Arbeit)

c) bei Unterhaltungen in der Wohnung

d) bei Unterhaltungen im Freien

Auszeichnungsschlüssel:

1) nie 2) manchmal 3) öfters 4) meistens

22. Wenn Sie an die letzten 12 Monate denken, bei welchen Tätigkeiten

und wie oft fühlen Sie sich gestört durch

I) Erschütterungen vom Straßenverkehr

II) Erschütterungen vom Schienenverkehr

gestört?

a) beim Fernsehen oder Radiohören

b) beim Ausruhen/ Ausspannen (nach der Arbeit)

c) bei Unterhaltungen in der Wohnung

d) bei Unterhaltungen im Freien

Auszeichnungsschlüssel:

1) nie 2) manchmal 3) öfters 4) meistens
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23. Wenn Sie an die letzten 12 Monate denken, bei welchen Tätigkeiten

und wie oft fühlen Sie sich gestört durch Autoabgasgeruch?

a) beim Fernsehen oder Radiohören

b) beim Ausruhen/ Ausspannen (nach der Arbeit)

c) bei Unterhaltungen in der Wohnung

d) bei Unterhaltungen im Freien

Auszeichnungsschlüssel:

1) nie 2) manchmal 3) öfters 4) meistens

24. Wenn Sie an die Verkehrsbelastungen der letzten 12 Monate denken,

haben Sie Folgendes getan/gedacht/gefühlt?

a) Ich habe die Fenster auch im Sommer tagsüber geschlossen gehal-

ten

b) Ich habe die Fenster auch im Sommer nachts geschlossen gehalten.

c) Ich habe mich geärgert.

d) Ich habe mit Ohrstöpsel geschlafen.

e) Ich habe mich hilflos gefühlt.

f) Ich denke ich bin weniger empfindlich als andere.

g) Ich habe mit Nachbarn darüber gesprochen.

h) Ich habe mit Vertretern der Gemeinde/Behörden darüber gespro-

chen.

1) ja 2) nein

25. Sie können nun Schulnoten zwischen 1 (sehr gut) und 5 (nicht genü-

gend) vergeben.

Wie beurteilen Sie die Aktivitäten der öffentlichen Stellen (Behörden/

Entscheidungsträger) um:

a) die Luftverschmutzung zu verringern

b) die Lärmbelastung zu verringern

c) die Erschütterungsbelastung zu verringern

d) den Verkehr zu verringern

26. Wenn Sie an den geplanten Ausbau der Bahn im Unterinntal denken,

glauben Sie persönlich, daß dieser Ausbau die Transit-Verkehrsbelastung

auf der Straße verringern wird?

1) erheblich verringern 4) wenig verringern

2) mittelmäßig verringern 5) überhaupt nicht verringern

27. Die Bewältigung des Transitverkehrs ist ein anerkannt großes Pro-

blem in Tirol. Würden sie eine der folgenden Aktionen selber tun bzw.

unterstützen?
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a) Eine Unterstützungserklärung für eine Bürgerinitiative unterschrei-

ben.

b) Einen Leserbrief an die Tages-/ Regionalzeitung schreiben.

c) In einer Bürgerinitiative selbst mitarbeiten.

d) An einer genehmigten Protestaktion teilnehmen.

1) eher Ja 2) eher Nein

28. Fühlen Sie sich an Ihrem Arbeitsplatz durch:

a) Lärm

b) Erschütterungen

c) Gerüche/ Abgase

d) Staub und Schmutz

e) Hitze/ Kälte/ Nässe oder Zugluft

1) überhaupt nicht gestört 2) wenig gestört

3) mittelmäßig gestört 4) stark gestört

29. Arbeiten Sie:

1) in normaler Arbeitszeit untertags

2) im Schichtdienst

3) während der Nacht (20 Uhr bis 6 Uhr Früh)

4) am Samstag

5) am Sonntag

30. Sind Sie selbst Raucher?

1) Ja, Wieviele Zigaretten rauchen Sie im Durchschnitt am Tag? (letz-

ten 12 Monate)

2) Nein

31. Leben andere Raucher in Ihrem Haushalt

1) Nein

2) Ja, Wieviele Zigaretten rauchen diese Personen im Durchschnitt zu

Hause?

32. Wie häufig haben Sie für gewöhnlich ein Auto zur Verfügung?

1) nie 2) manchmal 3) öfters 4) meistens bzw. fast immer

33. Wie häufig benützen Sie für gewöhnlich ein öffentliches Verkehrsmit-

tel?

1) nie 2) manchmal 3) öfters 4) meistens bzw. fast immer
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34. Wenn Sie alle Vor- und Nachteile Ihrer Wohngegend betrachten, würde

es Ihnen schwerfallen, anderswo hinzuziehen?

1) eher ja 2) eher nein (3) ist mir egal)

Gesundheit

35. Wenn Sie an die letzten 12 Monate denken, wie würden Sie Ihren Ge-

sundheitszustand insgesamt beurteilen?

1) sehr gut 2) gut 3) zufriedenstellend

4) weniger gut 5) schlecht

36. Leiden Sie an einer chronischen Erkrankung oder Behinderung?

1) Ja 2) Nein (Weiter mit Frage 38)

37. Schränkt Sie diese Erkrankung oder Behinderung in Ihren täglichen

Arbeiten/ Aktivitäten ein?

1) sehr stark 2) stark 3) mittelmäßig

4) ein wenig 5) überhaupt nicht

38. Denken Sie bitte an die letzten 3 Monate - Wie oft hatten Sie folgende

Beschwerden:

a) gerötete/ tränende/ oder juckende Augen

b) gereizte/ laufende/ oder verstopfte Nase

c) Rachen-/ Halsschmerzen

d) Kopfschmerzen/Migräne

e) Gereiztheit/Nervosität

f) Müdigkeit/ Erschöpfung

1) fast täglich 2) mehrmals pro Woche

3) mehrmals pro Monat 4) noch seltener

39. Hatten Sie während der letzten 3 Monate Schlafprobleme oder fühlten

Sie sich trotz normaler Schlafzeit unausgeschlafen?

1) fast täglich 2) mehrmals pro Woche

3) mehrmals pro Monat 4) noch seltener oder nie

40. Welche Art von Schlafproblemen war das? (Mehrfachantwort möglich)

1) Einschlafprobleme

2) Häufiges Erwachen

3) Probleme mit Wiedereinschlafen

4) Zu frühes Erwachen

5) Müdigkeit/ Zerschlagenheitsgefühl am Morgen
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41. Hat Ihnen ein Arzt JEMALS gesagt, daß Sie eines der folgenden Ge-

sundheitsprobleme haben?

I) Jemals

II) in letzten 12 Monaten

a) Heuschnupfen/ allergische Nase

b) andere allergische Reaktionen

c) Chronisches Ekzem

d) Asthma

e) Chronische Bronchitis

f) Bluthochdruck

g) Herzinfarkt oder Angina pectoris

h) Magen- oder Zwölffingerdarmgeschwür

1) Ja 2) Nein

42. Haben Sie während der letzten 12 Monate Medikamente wegen fol-

gender Gesundheitsprobleme eingenommen?

a) wegen Kopfschmerzen/Migräne

b) wegen Heuschnupfen

c) wegen Magenbeschwerden

d) wegen Nervosität

e) wegen Schlafproblemen

f) wegen Asthma

g) wegen Bluthochdruck

h) wegen Herzkrankheit

1) fast täglich 2) mehrmals pro Woche

3) mehrmals pro Monat 4) noch seltener

Reaktionsweise auf die Umwelt

Auszeichnungsschlüssel Frage 43 bis Frage 47

1) überhaupt nicht 2) gering

3) mittelmäßig 4) stark

43. Wie wetterfühlig/ wetterempfindlich schätzen Sie sich im allgemeinen

ein?

44. Wie lärmempfindlich schätzen Sie sich im allgemeinen ein?

45. Wie empfindlich gegenüber schlechten Gerüchen schätzen Sie sich im

allgemeinen ein?

46. Wie empfindlich gegenüber Luftverschmutzung schätzen Sie sich im

allgemeinen ein?
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47. Wie empfindlich gegenüber Erschütterungen schätzen Sie sich im all-

gemeinen ein?

Einige Fragen zu statistischen Zwecken

1. Geschlecht

1) männlich 2) weiblich

2. Haushaltstyp: Wohnen Sie:

1) alleine (mit/ohne Kind)

2) Ehe oder Lebensgemeinschaft (mit/ohne Kind)

3) Mehrgenerationenfamilie

3. Beruf: Welche berufliche Stellung haben Sie dzt? Sind Sie

1) Selbständig 2) Landwirt

3) Angestellter/VB 4) Beamter

5) Facharbeiter 6) angelernter Arbeiter/Hilfsarbeiter

7) In Lehrlingsausbildung 8) Schüler/ Student

9) Hausfrau/-mann 10) mithelfend im Familienbetrieb

11) Pensionist/ Rentner 12) derzeit nicht berufstätig

4. Schulbildung: Was ist Ihr höchster Schulabschluß?

1) Pflichtschulabschluß 2) abgeschlossene Lehre

3) Fachschule ohne Matura 4) Matura

5) Hochschule/ Uni/ Akademie

5. Sind Sie:

1) Eigentümer der Wohnung/ des Hauses 2) Mieter

6. Haben Sie Lärmschutzfenster?

1) Ja 2) Nein

Danke für das Interview!

2 Flemish survey

What follows is the actual text of the Flemish survey. Because this sur-

vey was conducted by postal mail, the page layout is important. All text

was placed inside the table headers, where it is here replaced by numbers

which are described below the table. The real page breaks are replaced by

horizontal lines over the page width.
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Uw mening over hinder door geluid, geur en licht

Gelieve alle vragen te beantwoorden door het overeenkomstige bolletje

te kleuren of door het antwoord op de stippellijntjes te noteren.

I ALGEMENE VRAGEN LEEFKWALITEIT & LEEFOMGEVING

1. Hoe tevreden bent U in het algemeem over de leefkwaliteit (veiligheid,

kindvriendelijkheid, leefmilieu,...) in uw buurt? Bent U hierover...

o zeer tevreden

o tevreden

o min of meer tevreden

o niet tevreden

o helemaal niet tevreden

2. Als we enkel kijken naar de leefkwaliteit (veiligheid, kindvriendelijk-

heid, leefmilieu,...) van uw buurt, zou u vrienden en kennissen dan

aanraden om hier te komen wonen?

o ja

o nee

o weet niet

Waarom wel? .................................................................................................

...........................................................................................................................

Waarom niet? ................................................................................................

...........................................................................................................................

3. Als u denkt aan de voorbije 12 maanden, in welke mate bent u ge-

hinderd of niet gehinderd door GELUID of GEUR of LICHT in en om

uw woning?

Kleur voor elke bron één bolletje.

Wanneer er geen GELUID, GEUR of LICHT waar te nemen is, kleur

DAN OOK het bolletje bij ‘helemaal niet gehinderd’.

Hoe gehinderd bent u?

Bronnen van hinder (1) (2) (3) (4) (5)

Geluid o o o o o

Geur o o o o o

Licht o o o o o

(1) Helemaal niet gehinderd
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(2) Een beetje gehinderd

(3) Tamelijk gehinderd

(4) Ernstig gehinderd

(5) Extreem gehinderd

4. Hebt u in de loop van de voorbije 12 maanden in verband met geluids-,

geur- of lichthinder... (meerdere antwoorden zijn mogelijk). Wanneer

u dit niet gedaan heeft, kleur dan telkens het bolletje bij “neen”.

(1) (2) (3) (4)

eraan gedacht om klacht in te dienen? o o o o

reeds éénmaal een klacht ingediend? o o o o

reeds meermaals klacht ingediend? o o o o

eraan gedacht om te verhuizen? o o o o

een advocaat gecontacteerd? o o o o

lid geworden van een actiecomité? o o o o

gepraat met zij die het veroorzaken? o o o o

meer aandacht besteed aan het sluiten

van deuren, ramen, gordijnen of rollui-

ken?

o o o o

uw woning aangepast en/of verbouwd? o o o o

andere: welke: ........................... o o o o

(1) ja, i.v.m. geluidshinder

(2) ja, i.v.m. geurhinder

(3) ja, i.v.m. lichthinder

(4) neen, heb dit niet gedaan

5. Als u denkt aan uw situatie thuis, dit wil zeggen in en om uw woning,

in welke mate is de hinder door volgende bronnen veranderd in de

laatste twee jaar?

Als u nu geen hinder ondervindt en twee jaar geleden ook niet, kleur

dan het bolletje bij “situatie is dezelfde gebleven”. Als u nu nog

evenveel hinder ondervindt als twee jaar geleden, kleur dan óók het

bolletje bij “situatie is dezelfde gebleven”.
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De hinder is...

Bronnen van hinder (1) (2) (3) (4) (5) (6)

Geluid o o o o o o

Geur o o o o o o

Licht o o o o o o

(1) Ik woon hier nog geen 2 jaar

(2) Situatie is dezelfde gebleven

(3) Sterk toegenomen

(4) Enigzins toegenomen

(5) Enigzins afgenomen

(6) Sterk afgenomen

6. Hoe zou u best de omgeving waar u woont omschrijven?

o centrum van een stad

o stad maar niet het centrum

o randgemeente van een stad

o landelijke gemeente of plattelandsgemeente

7. Hoe ver van uw woning is de dichtst gelegen industrieterrein of fa-

briek?

o minder dan 50 m o 500 m tot 1 km

o 50 tot 100 m o 1 km tot 5 km

o 100 m tot 500 m o meer dan 5 km

8. Woont u in een omgeving met...?

o zeer veel verkeer

o veel verkeer

o normaal verkeer

o weinig verkeer

o zeer weinig verkeer

Op de pagina’s hierna volgen enkele specifieke vragen met betrekking

tot elk van de drie hinderaspecten.

II GELUIDSHINDER

1. In volgende tabel worden enkele mogelijke bronnen van geluidshinder

aangegeven. Als u denkt aan de voorbije 12 maanden, hoe gehinderd
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of niet gehinderd bent u door het geluid van de volgende bronnen in

en om uw woning?

Als u géén hinder ondervindt van een bepaalde bron, kleur dan het

bolletje ‘Helemaal niet gehinderd’!

Wanneer u de geluidsbron niet hoort in en om uw woning, kleur

DAN OOK het bolletje bij ‘Helemaal niet gehinderd’.

Hoe gehinderd bent u?

Bronnen van geluidshinder (1) (2) (3) (4) (5)

VERKEER EN VERVOER

Straatverkeer o o o o o

Treinverkeer o o o o o

Luchtvaart o o o o o

Scheepvaart o o o o o

Kleine en Middelgrote Ondernemingen & INDUSTRIE

Laden en lossen van vrachtwagens o o o o o

Zelfstandige beroepsactiviteiten (tim-

merman, bakker,...)

o o o o o

Bedrijven, fabrieken o o o o o

Handel en diensten o o o o o

Bouw- en sloopactiviteiten o o o o o

RECREATIE EN TOERISME

Muziek van dancings o o o o o

Muziek van cafés en restaurants o o o o o

Pretparken o o o o o

Kermissen, braderijen en muziekfes-

tivals

o o o o o

Sportvelden en -stadia o o o o o

Race- en crosscircuits o o o o o

LANDBOUW

Landbouwwerktuigen o o o o o

Vee (koeien, schapen, pluimvee,...) o o o o o

Geluid van ventilatoren van stallen o o o o o

BUREN
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Spelende kinderen o o o o o

Huisdieren van buren o o o o o

Doe-het-zelf-activiteiten van buren o o o o o

ANDERE of ONBEKENDE 1 BRON: noteer welke:

– ................. o o o o o

– ................. o o o o o

– ................. o o o o o

1 Met onbekende bron bedoelen we de hinder die u ondervindt of

ondervonden heeft, zonder juist te weten wat de oorzaak hiervan was.

(1) Helemaal niet gehinderd

(2) Een beetje gehinderd

(3) Tamelijk gehinderd

(4) Ernstig gehinderd

(5) Extreem gehinderd

2. Welke andere opmerkingen heeft u nog over deze geluidshinder?

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

III GEURHINDER

1. In volgende tabel worden enkele mogelijke bronnen van geurhinder

aangegeven.

Als u denkt aan de voorbije 12 maanden, hoe gehinderd of niet ge-

hinderd bent u door de geur van de volgende bronnen in en om uw

woning?

Als u géén hinder ondervindt of wanneer er geen bron van hinder

is, kleur DAN OOK het bolletje bij ‘Helemaal niet gehinderd’.

Hoe gehinderd bent u?

Bronnen van geurhinder (1) (2) (3) (4) (5)

VERKEER EN VERVOER
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Straatverkeer (uitlaatgassen van au-

to’s , vrachtwagens, bussen)

o o o o o

Luchtvaart (militaire en burgervluch-

ten, heli’s,...)

o o o o o

Kleine en Middelgrote Ondernemingen & INDUSTRIE

Slachterijen en verwerken dierlijk af-

val, vetsmelterijen

o o o o o

Verfspuitcabines o o o o o

Chemische en petrochemische nijver-

heid

o o o o o

Textielbedrijven o o o o o

Voedings- en drankenindustrie, in-

clusief brouwerijen

o o o o o

Composteringsinstallaties voor

groenafval en GFT-afval

o o o o o

Veevoederbedrijven o o o o o

Metaal- en metaalverwerkende indu-

strie

o o o o o

HANDEL, DIENSTEN, RECREATIE EN TOERISME

Horeca (restaurant, frituur, bakker,

beenhouwer)

o o o o o

Benzinestations o o o o o

LAND- EN TUINBOUW

Varkensstallen o o o o o

Uitspreiden van dierlijke mest o o o o o

Stookinstallaties tuinbouw o o o o o

Pluimveehouderijen o o o o o

Rundveekwekerijen o o o o o

WATER EN ZUIVERING

Waterlopen (beek, rivier, kanaal) o o o o o

Waterzuivering o o o o o

Riolering o o o o o

BUREN

Verbranden van afval o o o o o

Opslaan van afval (composthopen,...) o o o o o
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Huisdieren (honden, kippen) o o o o o

ANDERE of ONBEKENDE 1 BRON: noteer welke:

– ................. o o o o o

– ................. o o o o o

– ................. o o o o o

1 Met onbekende bron bedoelen we de hinder die u ondervindt of

ondervonden heeft, zonder juist te weten wat de oorzaak hiervan was.

(1) Helemaal niet gehinderd

(2) Een beetje gehinderd

(3) Tamelijk gehinderd

(4) Ernstig gehinderd

(5) Extreem gehinderd

2. Welke andere opmerkingen heeft u nog over deze geurhinder?

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

IV LICHTHINDER

1. In volgende tabel worden enkele mogelijke bronnen van lichthinder

aangegeven.

Als u denkt aan de voorbije 12 maanden, hoe gehinderd of niet ge-

hinderd bent u door het licht van volgende bronnen in en om uw

woning?

Als u géén hinder ondervindt of wanneer er geen bron van hinder

is, kleur DAN OOK het bolletje bij ‘Helemaal niet gehinderd’.

Hoe gehinderd bent u?

Bronnen van lichthinder (1) (2) (3) (4) (5)

VERKEER EN VERVOER

Verlichting van autosnelwegen o o o o o

Verlichting van gemeente- en gewest-

wegen

o o o o o
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Verlichting parkeerterreinen o o o o o

Kleine en Middelgrote Ondernemingen & INDUSTRIE

Verlichting van industrieterreinen o o o o o

HANDEL, DIENSTEN, RECREATIE EN TOERISME

Lichtreclame o o o o o

Verlichte uitstalramen o o o o o

Laserverlichting (dancings, biosco-

pen)

o o o o o

Verlichting sport- en recreatieterrei-

nen

o o o o o

Feestverlichting o o o o o

Verlichting gebouwen en/of monu-

menten

o o o o o

LANDBOUW

Verlichting serres o o o o o

BUREN

Verlichting tuinen en opritten o o o o o

ANDERE of ONBEKENDE 1 BRON: noteer welke:

– ................. o o o o o

– ................. o o o o o

– ................. o o o o o

1 Met onbekende bron bedoelen we de hinder die u ondervindt of

ondervonden heeft, zonder juist te weten wat de oorzaak hiervan was.

(1) Helemaal niet gehinderd

(2) Een beetje gehinderd

(3) Tamelijk gehinderd

(4) Ernstig gehinderd

(5) Extreem gehinderd

2. Welke andere opmerkingen heeft u nog over deze lichthinder?

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

V BELEID
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1. In het algemeen, hoe belangrijk vindt u het dat de overheid een op-

lossing zoekt om hinder weg te nemen? Kleur het bolletje voor elke

bron. Probeer niet enkel aan uw eigen situatie te denken, maar wel in

het algemeen.

Ik vind dit:

(1) (2) (3) (4) (5)

Geluid o o o o o

Geur o o o o o

Licht o o o o o

(1) Totaal onbelangrijk

(2) Niet belangrijk

(3) Belangrijk

(4) Zeer belangrijk

(5) Uitzonderlijk belangrijk

2. Welke andere opmerkingen heeft u nog over dit beleid in het algemeen?

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

VI ALGEMENE VRAGEN

1. Wat is uw geslacht?

o man

o vrouw

2. Wat is uw leeftijd? .......................

3. Hoeveel personen wonen er bij u thuis, uzelf meegeteld?

............ personen

4. Wat is uw hoogst behaalde diploma? (Het gaat over het onderwijs dat

u volledig gevolgd heeft tot en mét het behalen van het overeenkom-

stig diploma.)

o geen

o lager onderwijs

o lager technisch of lager beroeps

o lager algemeen middelbaar



Flemish survey 225

o hoger technisch of hoger beroeps

o hoger algemeen middelbaar

o hoger niet universitair onderwijs

o universitair onderwijs

5. Bent u...? (u mag zo nodig meer dan één antwoord aanduiden)

o voltijds beroepsmatig actief

o deeltijds beroepsmatig actief

o werkzoekende

o student

o huisvrouw/-man

o bruggepensioneerd/gepensioneerd

o andere (ziekte, invaliditeit, loopbaanonderbreking,...)

6. Duid aan wanneer u thuis bent op dit adres tijdens een gewone week

in het jaar. Gelieve geen rekening te houden met vakanties.

meestal of soms zelden of

altijd nooit

dag tijdens voormiddag o o o

de week namiddag o o o

avond o o o

nacht o o o

zaterdag voormiddag o o o

namiddag o o o

avond o o o

nacht o o o

zondag voormiddag o o o

namiddag o o o

avond o o o

nacht o o o

7. In welk type woning woont u?

o apartement/loft/studio o halfopen bebouwing

o rijwoning zonder tuin o open bebouwing

o rijwoning met tuin o andere
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8. Bent u (of iemand anders van uw gezin) eigenaar of huurder van de

woning die u op dit adres bewoont?

o eigenaar

o huurder

9. Hoelang woont u reeds op dit adres? .......... jaar

10. Wat is de postcode van de gemeente waar u woont? ...............

11. Wat is de straat en het huisnummer van uw woning? (*)

straat: ..............................., nr: ................, bus: ............

Kijkt u tot slot nog eens na of u alle vragen beantwoord heeft A.U.B..

Wij danken u voor uw medewerking.

(*) Uw antwoord wordt vertrouwelijk behandeld. Het invullen van uw adres

is vrijblijvend. Toch vragen we u dit te doen omdat dit nuttig is voor dit

onderzoek.
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A-weighting, 4

accumulation process, 126

aggregator, 29, 40

alpha-cut, 14

analytic hierarchy process, 56

annoyance, see noise annoyance

annoyance equivalents model, 124

annoyed, 49, 53, 55

appraisal

primary, 5

secondary, 5

approximate descriptor, 103, 105,

131

degree of certainty, 103

degree of necessity, 103

lower approximation, 103

upper approximation, 103

approximate reasoning, 37

base variable, 36

cardinality, 14

Cartesian product, 21

certainty measure, 25

choice, 137

Choquet integral, 32, 138, 139, 142,

146, 181, 190

bipolar, 150

k-additive, 143, 149

classification, 137, 138, 150

cognitive process, 125, 126, 190

combined noise sources paradox,

see principle of compro-

mise

composition, 21

computational intelligence, 10

computing with perceptions, 38

computing with words, 10, 38, 190

conceptual annoyance model, 91,

92, 170, 188

conjunction model, 41, 42, 44

coping, 5, 96

active, 96

emotional, 96

political, 96

core, 14

crisp quality measure, 108–110,

158, 166

crossover, 198

one point, 198

two point, 198

uniform, 110, 134, 145, 146,

148, 199, 200

cylindrical extension, 21

database, 99, 100, 129

Day-Evening-Night-Level, 4, 94

Day-Night-Level, 4, 94, 170

decibel, 3

A-weighted, 4, 90

decision process, 126

discord, 60

dominant source model, 125

dose-response relationship, 87–89,

124

doubt, 141, 149, 179

driving forces, 3, 190
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emission, 3

entropy, 59

enviroscape, 89

error measure, 109, 134, 140

evaluation process, 126

evolutionary computing, 10, 193

exploitation, 198

exploration, 198

false negative, 108, 132, 162

fitness, 110, 134, 194, 196

fitness scaling, 198

footprint of uncertainty, 81

frame of reference, 126, 135, 136,

138, 179, 181

fuzzy equality, 15

fuzzy integral, 32, 138

fuzzy logic, 13, 129, 188, 190

fuzzy measure, 24, 31, 138

alternative representation, 32,

140

bipolar, 150

decomposable, 31, 145

enumeration, 31, 139

k-additive, 142, 143

k-maxitive, 147

relationship, 31, 140

fuzzy qualifier, 105, 133

certainty, 105, 107

possibility, 106, 133

truth, 106

fuzzy quality measure, 108–111,

161, 168

fuzzy relation, 20, 39

fuzzy rule, 38, 41, 91, 188

adaptability, 43, 169

certainty qualifying, 42, 102,

114, 164

degree of fulfillment, 43

firing strength, 43

parallel, 40, 100, 102, 117

possibility qualifying, 42, 102,

116, 130, 164

truth qualifying, 42, 102

fuzzy rule base, 91, 99, 100, 129,

130, 169, 187, 188

fuzzy set, 13

complement, 13

intersection, 13

L-fuzzy set, 44

level-2, 44

normal, 14

normalization, 14

preference interpretation, 23

similarity interpretation, 22,

26

type-2, 44, 79

interval, 81

uncertainty interpretation, 23

union, 13

fuzzy set theory, 13, 150, 187, 190

fuzzy subset, 15

fuzzy truth value, 37, 43, 104, 106

fuzzy truth variable, 37, 106

generalized mean, 29

genetic algorithm, 110, 114, 134,

140, 193, 202

genome, 148, 194–196, 200

genotype, 148, 194, 196

hedge, 36, 53, 55, 98, 135

height, 14

highly annoyed, 49, 52, 87, 187

humanistic system, 92

idempotent, 19

immission, 4

impact, 3

implication model, 41, 42

implicator, 33, 102

border, 34

dual, 34
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examples, 35

material, 34, 42, 102, 117

residual, 35, 42

inference, 99, 102, 129

compositional rule, 39, 102

global, 40

local, 40

information

imprecise, 6

precise, 6

uncertain, 7

vague, 6

knowledge base, 99, 111, 129

linguistic approximation, 99, 103,

104, 111, 118, 129, 131,

166

descriptive expression, 104

matching distribution, 104, 108

matching term, 104, 108, 131

linguistic modifier, 36, 53, 135

linguistic term

inclusive interpretation, 54, 58,

64

linguistical interpretation, 54

logical interpretation, 54

matching distribution, 131

non-inclusive interpretation,

54, 58, 64

linguistic truth value, see fuzzy truth

value

linguistic truth variable, see fuzzy

truth variable

linguistic value, 36, 38, 53

linguistic variable, 35, 36, 38, 50,

53

little annoyed, 49

Möbius transform, 142

possibilistic, 147

masking, 122, 126, 171

membership degree, 13

membership function, 13

asymmetric Gaussian, 16

linear, 15

lower, 81

sigmoidal, 16

trapezoidal, 16

triangular, 15

upper, 81

modus ponens, 38, 39

generalized, 38, 39

multi-criteria decision making, 137,

190

mutation, 198

self-adaptive, 110, 134, 145,

146, 148, 199, 200, 202

necessity measure, 25

negator, 18

examples, 19

standard, 18

strong, 18

neo-darwinism, 194

neural network, 10, 149, 150

neuro-fuzzy computing, 150

noise

clustering indicator, 98, 111

pre-conditioner, 90, 98, 173

trigger, 98

noise annoyance, 2, 5, 87, 91, 121,

159, 187, 190

noise annoyance advisor, 91–93,

99–101, 107, 108, 112, 117,

124, 157, 159, 164, 165,

168, 171, 173, 176, 188,

189, 201

noise exposure, see sound expo-

sure

non-specificity, 60, 108, 110, 111,

132, 162, 189

object oriented, 90, 201
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Ordered Weighted Averaging, 29

Ordered Weighted Maximum, 29

ordering, 137

perception process, 126

perceptual model, 122, 124–126

phenotype, 148, 194

physiology, 2

plinth, 14

possibility

assignment equation, 26

epistemological meaning, 23

physical meaning, 23, 26

possibility assignment equation,

28

possibility distribution, 25

certainty interpretation, 27

lower bound, 27

possibility interpretation, 27

upper bound, 28

possibility measure, 25, 31, 145,

147

possibility theory, 24

powering hedge, 37

examples, 37

premature convergence, 197

pressure, 3, 190

primary membership value, 79

principle

maximum specificity, 27, 131

minimum specificity, 28

natural selection, 194

possibility/probability consis-

tency, 26, 57, 62

uncertainty conservation, 59

principle of compromise, 122, 125,

131, 132, 141, 180

principle of incompatibility, 39

probabilistic reasoning, 10

probability measure, 25, 31, 143

probability theory, 24

projection, 21

psychophysical model, 122, 123,

125

psychscape, 89

quality of life, 150, 191

quantitative model, 123

R-implicator, see residual implica-

tor

ranking, 137

responses, 3

reversed preference, 141, 149, 179

S-implicator, see material implica-

tor

scale

bipolar, 150

cardinal, 30, 32, 137, 139

interval, 30

nominal, 30

ordinal, 30, 32, 137–139

ratio, 30

secondary membership function,

79

selection, 137

selection pressure, 197

set, 13

shifting hedge, 37, 135

similarity measure, 22, 43, 68, 69,

77, 104, 166

similarity relation, 22

social survey, 7, 48, 87, 121, 127,

138, 149, 151, 152, 154,

189

soft computing, 9, 150, 193

sorites paradox, 11

sorting, 137

sound exposure, 3, 87, 122, 123

A-weighted, 4

sound pressure level, 3

soundscape, 2, 89, 92, 175

state, 3, 190
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strong alpha-cut, 14

strongest component model, 125–

127, 129, 132, 180, 182,

190

Sugeno integral, 32, 138, 139, 146,

181, 190

bipolar, 150

k-maxitive, 147

summation and inhibition model,

123

support, 14

sustainable development, 2, 191

t-conorm, see triangular conorm

t-norm, see triangular norm

transactional model, 5

transformation

maximum normalization fre-

quency, 59

probabilistic difference, 62

probabilistic difference frequency,

62

probability-possibility, 57, 167

uncertainty conservation, 60

uncertainty invariance frequency,

59

triangular conorm, 17

duality, 18

examples, 20

n-ary, 19

triangular norm, 17

duality, 18

examples, 20

n-ary, 19

truth functional modification, 106

inverse, 104, 107

unified modeling language, 90

Weighted Arithmetic Mean, 29

Zeta transform, 142

possibilistic, 147


	Samenvatting
	Probleemstelling
	Ervaren van geluidshinder
	Duurzame ontwikkeling
	Geluidshindermodellen

	Voorstellen van geluidshinder
	Hinderschalen
	Internationale hinderschaalstudie
	Vaagverzamelingen voor hindertermen
	Vertalen van hindertermen

	Modelleren van geluidshinder
	Hinder door specifieke brontypes
	Hinderaccumulatie

	Resultaten
	Enquêtes
	Voorspellen van hinder door verkeer
	Voorspellen van hinderaccumulatie

	Besluit

	Abbreviations
	List of symbols
	List of publications
	Introduction
	Perception of noise annoyance
	Noise exposure
	Environmental noise pollution
	Noise annoyance

	Modeling issues
	Towards a solution

	Basic concepts of fuzzy sets and fuzzy logic
	A Greek tale
	Basic definitions
	Fuzzy sets and fuzzy logic
	Properties of fuzzy sets
	Fuzzy set representations

	Triangular norms and conorms
	Definitions
	Properties

	Fuzzy relations
	Semantics
	Possibility theory
	Possibility measures
	Possibility distributions
	Interpretations of possibility distributions

	Aggregation operators
	Definitions
	Fuzzy integrals

	Approximate reasoning
	Implicators
	Linguistic variable
	Fuzzy rules
	Compositional rule of inference
	Other inference schemes

	Generalizations
	Notational conventions

	Representing noise annoyance
	Annoyance scales
	International Annoyance Scaling Study
	Constructing annoyance terms
	Overview
	Probabilistic methods
	Fuzzification methods
	Comparison

	Translating annoyance terms
	Overview
	Similarity between fuzzy sets
	Translations based on similarity
	Translation of an ideal fuzzy language
	Sensitivity analysis

	Uncertainty on linguistic terms

	Modeling noise annoyance
	Current state of the art
	Noise annoyance advisor
	Conceptual annoyance model
	Instantiating the annoyance model
	Rule qualification
	Measuring performance
	Tuning rules

	Building blocks
	Visualization
	Impact of inference schemes
	Computational complexity
	Prediction performance


	Modeling noise annoyance accumulation
	Current state of the art
	Problem statement
	Energy summation models
	Vector summation model
	Strongest component model

	Fuzzy accumulation rules
	Introduction
	Cognitive process modeling in binary logic
	Fuzzifying the cognitive process
	Rule qualification
	Changing the frame of reference
	Integration in the noise annoyance advisor

	Models based on fuzzy integrals
	Multi-criteria decision making
	Learning fuzzy measures
	Other approaches for learning fuzzy measures

	Other fuzzy accumulation models
	Related applications

	Modeling results
	Introduction
	Surveys
	Austrian survey
	Flemish survey

	Traffic noise annoyance advisor
	Introduction
	Analyzing crisp optimized results
	Analyzing fuzzy optimized results
	Analyzing inference scheme impact
	Analyzing the generality of the model
	Analyzing the rule base

	Annoyance accumulation advisor
	Overview
	Fuzzy rule based model
	Fuzzy integral based models


	Conclusions
	Genetic algorithms
	Introduction
	Biological principles
	Computer simulation
	Basic algorithm
	Representation
	Selection
	Crossover and mutation

	Summary

	Software
	Introduction
	Overview
	Package descriptions
	General utilities
	Persistence
	Fuzzy sets
	Fuzzy operators
	Fuzzy rules
	Fuzzy inference engines
	Database
	Model


	Surveys
	Austrian survey
	Flemish survey

	Bibliography
	Index



